

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE of

B. Tech. (Computer Science & Engineering (Artificial Intelligence and Machine Learning)) VII & VIII Semester

[Draft Syllabus Subjected to approval]

Effective for the students admitted in year 2021-22 and onwards Approved by academic council meeting held on

Teaching & Examination Scheme

B. Tech. (Computer Science & Engineering (Artificial Intelligence and Machine Learning))

4rdYear – VII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	ry Course Code	Course Title	Hours		Exam Hours	Marks			Credit		
				L	Т	P		IA	ЕТЕ	Total		
			TH	EOI	RY							
1	DC	7CM4-01	Natural Language Processing	3	-	-	3	30	70	100	3	
2	UE	Course co	sity Elective subject ode and title to be selected e university elective pool of subjects	3	-	-	3	30	70	100	3	
3	DE	7CM5-11 7CM5-12 7CM5-13	Mobile Computing Soft Computing and Evolutionary Algorithms Generative AI	2	-	-	3	30	70	100	2	
		Sub To	otal	8	00	00	-	90	210	300	8	
			PRACTICAL &	SE	SSI	ON	AL		1			
4	DC	7CM4-21	Natural Language Processing Lab	-	-	2	-	60	40	100	1	
5	UI	7CM7-30	Industrial Training	-	-	1	-	60	40	100	3	
	UI	7CM7-50	B.Tech. Project - I	-	-	3	-	60	40	100	2	
6	CCA	7CM8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	1	
		Sub To	otal	00	00	06	-	180	220	400	7	
		Tota	1	8	00	06	-	270	430	700	15	

L = Lecture, T = Tutorial, P = Practical, IA=Internal Assessment, ETE=End TermExam, Cr=Credits

Teaching & Examination Scheme

B. Tech. (Computer Science & Engineering (Artificial Intelligence and

Machine Learning))

4rdYear – VIII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course Code	Course Title		Hour		Exam Hours		Mark		Credit
				L	T	Р		IA	ETE	Total	
			TH	EO	RY						
1	UE	Course co	sity Elective subject de and title to be selected university elective pool of subjects	3	-	-	3	30	70	100	3
		Sub To	otal	3	00	00		30	70	100	3
			PRACTICAL	&	SES	SIC	DNAL				
10	UI	8 CM 7-40	Seminar	-	-	2	-	60	40	100	2
	UI	8 CM 7-50	B.Tech. Project - II	-	-	3	-	60	40	100	4
12	CCA	8 CM 8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	2
		Sub To	tal	00	00	05	-	120	180	300	8
		Tota	1	03	00	05	-	150	250	400	11

L = Lecture, T = Tutorial, = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

	VII Semester B. Tash. (Commuter Science & Engineering (Artificial Intelligence and Machine Learning	~))
	B. Tech. (Computer Science & Engineering (Artificial Intelligence and Machine Learnin 7CM4-01: Natural Language Processing	g))
	Credit: 3 Max. Marks: 100 (IA:30, ETE:70)	
	3L+0T+ 0P End Term Exams: 3 Hours	
Cours	e Objectives: As a result of successfully completing this course, students will:	
	Able to study language and the tools that are available to efficiently study	
•	Analyze large collections of text and should learn about the effects of electronic communication	tion on ou
	nguage.	
	e Outcomes: Upon successful completion of the course, students will be able to	
	Learn about major NLP issues and solutions	
	Become agile with NLP programming.	
	Be able to asses NLP problems	
	Understand Natural language understanding, processing, generation	
. No.	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction: Introduction to NLP - Various stages of NLP, A computational framework for	
	natural language, description of English or an Indian language in the frame work, lexicon,	7
	algorithms and data structures for implementation of the framework, Finite state automata.	
	Applications like machine translations.	
3	Word Level and Syntactic Analysis: Introduction to Corpora Analysis, Word Level	
	Analysis: Regular Expressions, Finite-State Automata, Morphological Parsing, Spelling Error	8
	Detection and correction, Words and Word classes, Part-of Speech Tagging. Syntactic	
	Analysis: Context-free Grammar, Constituency, Parsing Probabilistic Parsing. Machine-	
4	readable dictionaries and lexical databases, RTN, ATN.	0
4	Semantic Analysis: Shallow Parsing and Chunking, Shallow Parsing with Conditional	8
	Random Fields (CRF), Semantic Analysis: Meaning Representation, Lexical Semantics,	
	Ambiguity, Word Sense Disambiguation. Discourse Processing: cohesion, Reference Resolution, Discourse Coherence and Structure. Knowledge Representation, reasoning.	
5	Natural Language Generation: NL interfaces, Natural Language Generation (NLG):	8
5	Architecture of NLG Systems, Generation Tasks and Representations, Application of NLG.	0
	Machine Translation: Problems in Machine Translation, Characteristics of Indian Languages,	
	Machine Translation Approaches, Translation involving Indian Languages	
6	Information Retrieval and Lexical Resources : Recent trends in NLP, Information Retrieval:	8
-	Design features of Information Retrieval Systems, Classical, Non-classical, Alternative	-
	Models of Information Retrieval, valuation Lexical Resources: World Net, Frame Net,	
	Stemmers, POS Tagger.	
	Total	40
ugge	sted Books:	
00	ral Language understanding by James Allen, Pearson Education 2008	
. NLF	P: A Paninian Perspective by Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal, Prentice Hal	1
	ning and Grammar by G. Chirchia and S. McConnell Ginet, MIT Press	
	Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognitio	n by Dani
urafsł	xy and James H. Martin, Pearson Education	

5. Natural language processing in Prolog by Gazdar, & Mellish, Addison-Wesley

	B. Tech. (Computer Science & Engineeri	II Semester ng (Artificial Intelligence and Machine Learning) : Mobile Computing)			
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)				
	2L+0T+ 0P End Term Exams: 3 Hours					
0		End Term Exams: 5 Hours				
As a res • To ma • To un	nderstand the typical mobile networking infrastru	bile computing paradigm, its novel applications, and limit				
• To ur	nderstand the database issues in mobile environmerstand the ad hoc networks and related concepts.					
	nderstand the platforms and protocols used in the					
	e Outcomes:					
Upon s	successful completion of the course, students	s will be able to				
-	Think and develop a new mobile applicatio					
	· · · · ·	new paradigm and come up with a solution(s).				
	Develop new ad hoc network applications a					
	Understand & develop any existing or new	*				
5. No.		Contents	Hour			
1	Applications and Impediments and Archite	Mobile Computing – Paradigm, Promises/Novel ecture; Mobile and Handheld Devices, Limitations – Services, System Architecture, Radio Interfaces, r. Security, New Data Services, GPRS	5			
2	(Wireless) Medium Access Control (MA	C): Motivation for a specialized MAC (Hidden and lals), SDMA, FDMA, TDMA, CDMA, Wireless	6			
3	Mobile Network Layer: IP and Mobile I	IP Network Layers, Packet Delivery and Handover egistration, Tunneling and Encapsulation, Route	6			
4	Mobile Transport Layer: Conventional Mobile TCP, Other Transport Layer Protoc	TCP/IP Protocols, Indirect TCP, Snooping TCP, cols for Mobile Networks. Database Issues: Database t-Server Computing & Adaptation, Transactional	6			
5	Data Dissemination and Synchronization	on: Communications Asymmetry, Classification of nination, Broadcast Models, Selective Tuning and Introduction Software and Protocols	5			
	· · ·	lotal	28			
C			_0			
 Joch Raj F ASO and Ser UWF 	rvice Creation" Second Edition, Mc Graw Hill. E Hansmann, Lother Merk, Martin S. Nicklaus, 7 I, Springer.					

		VII Semester ering (Artificial Intelligence and Machine Learning)		
		outing and Evolutionary Algorithms)	
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)		
	2L+0T+ 0P End Term Exams: 3 Hours			
	e Objectives:			
As a res	sult of successfully completing this course, stu Able to understand basics of Fuzzy Set Able to understand the concepts of the gener Able to understand the idea of the evolution	tic algorithms.		
Cours	e Outcomes:			
Upon s	successful completion of the course, stude	ents will be able to		
CO-1:	Comprehend the fuzzy logic and the concept	of fuzziness involved in various systems and fuzzy set theor	y.	
	inference systems, and fuzzy logic	ledge representation using fuzzy rules, approximate reasonin		
00-3:		andom search procedures useful while seeking global optimu	m in self	
CO 4.	learning situations.	and another and an another do in Soft Comparison To the	·	
S. No.		ch problems and research methods in Soft Computing Techn Contents	Hours	
1		ims of Soft Computing-Foundations of Fuzzy Sets of Fuzzy Sets- Elements of Fuzzy Mathematics-Fuzzy	5	
2	Application of Fuzzy Sets : Applications of Fuzzy Sets-Fuzzy Modeling – Fuzzy Decision Making-Pattern Analysis and Classification-Fuzzy Control Systems-Fuzzy Information Processing-Fuzzy Robotics.			
3	Genetic Algorithm- Genetic Algorithm and Genetic Search Algorithms Issues	Genetic Algorithm Based Optimization-Principle of with Directed Mutation- Comparison of Conventional of GA in practical implementation. Introduction to tors-GA and PSO in engineering applications	6	
4	Neuro-Fuzzy Technology: Fuzzy Neur Fuzzy Systems- Generation of Fuzzy I Defuzzyfication in Neuro-Fuzzy System Combination of Genetic Algorithm	ral Networks and their learning-Architecture of Neuro- Rules and membership functions - Fuzzification and as- Neuro-Fuzzy Identification - Neuro Fuzzy Control- with Neural Networks- Combination of Genetic zzy and Genetic Approach in engineering applications.	6	
5	Basic Evolutionary Processes, EV: A S Problem Solvers, A Historical Perspectiv	Simple Evolutionary System, Evolutionary Systems as ve, Canonical Evolutionary Algorithms - Evolutionary Jnified View of Simple EAs- A Common Framework,	5	
	-	Total	28	
Sugges 1. 2. 3. 4. 5.	Lament, Veldhnizer (Springer) Fuzzy Logic with Engineering Applicati Sivanandam, Deepa, "Principles of Soft	lti-objective, Optimization Problems (2nd Edition), Co ions Timothy J. Ross (Wiley)	llelo,	
<i>.</i> .	-	gineering Applications", McGraw Hill		

	R Tech (Computer Science & Engine	VII Semester ering (Artificial Intelligence and Machine Learning)	
		5-13: Generative AI	<u> </u>
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)	
	2L+0T+ 0P	End Term Exams: 3 Hours	
	language processing. Develop skills in designing and implem	se, students will be: rative AI and its applications in computer vision and enting generative models using deep learning framewo of generative models in various applications.	
Course	e Outcomes:	<u>8</u>	
CO-1: CO-2: CO-3:	Understand the strengths and limitations models for specific tasks. Develop problem-solving skills using ge	s for image and text generation, and other applications. of various generative models and be able to select app nerative AI and be able to apply them to real-world pro-	oropriate oblems.
S. No.	-4: Critically evaluate the performance of generative models and develop strategies for improvem Contents		Hours
1	Introduction: Objective, scope and out		1
2		of Generative Models (VAE, GAN, RNN, etc.),	6
3	Generative Models for Computer V image processing, Generative Adversari	ision : Convolutional Neural Networks (CNNs) for al Networks (GANs) for image generation, Variational ession and generation, Case studies: Image generation,	7
4	Generative Models for Natural Lang	uage Processing: Recurrent Neural Networks (RNNs) text generation and language modeling, Generative s, and language translation	7
5	Advanced Generative AI Topics: Ge	enerative models for multimodal data (images, text, equential data (time series, videos, etc.), Advanced	7
		Total	28
1.	O'Reilly Media	lachines to Paint, Write, Compose, and Play by David F	Foster,
2. 3. 4. 5.	Deep Learning by Ian Goodfellow, Yos Generative Adversarial Networks by Ian Natural Language Processing (almost) f Neural Network Methods for Natural La Deep Learning for Computer Vision with	n Goodfellow, Yoshua Bengio, and Aaron Courville From Scratch" by Collobert et al. anguage Processing" by Yoav Goldberg	

ESTD. गैकेनी झाल र	OFFICE O	F THE DEAN ACADEMICS	HE MAHAIMA				
		VII Semester					
		eering (Artificial Intelligence and Machine Learning))				
	7CM4-21: Natural Language Processing Lab						
	Credit: 1 Max. Marks: 100 (IA:60, ETE:40)						
	0L+0T+ 2P	End Term Exams: 2 Hours					
	e Objectives:						
As a re	esult of successfully completing this cours						
•	To provide hands-on experience with N To understand the applications and limit						
•		, and evaluating NLP Model with other models					
Cours	e Outcomes:	and evaluating that model with other models					
Upon s	successful completion of the course, stude	ents will be able to					
-	-	trum of problem statements, tasks, and solution approac	hes within				
	NLP						
CO-2:	Will be able to implement and evaluate	different NLP applications and apply machine learning	g and deep				
	learning methods for this process.		-				
CO-3:	CO-3: Evaluate various algorithms and approaches for the given task, dataset, and stage of the NLP product.						
CO-4:	Understand the working principle of cor	nvolution neural networks, LSTM etc					
S. No.		List of Experiments					
1	Basic Text Processing operation on text	document.					
2	Implement N-gram Language model						
3	Write a program to extract feat Word2Vec/Glove/fastText.	tures from text and Implement word embeddi	ng using				
4	Implement LSA and Topic model.						
-		Now David CVM					
5	Implementation text classification using	•					
6	Implementation of K-means Clustering	algorithm on text.					
7	Implement text processing with neural r	network.					
8	Implement text processing with LSTM						
9	Implement HMM/CRF on sequence tagging task						
10	Develop any one NLP application Sentiment Analysis						
	- Chatbot						
	- Text Summarization Track - Machine Translation						
Sugge	sted Books:						
1.	Natural Language Processing (almost) f	rom Scratch" by Collobert et al.					
2.	Neural Network Methods for Natural La	anguage Processing" by Yoav Goldberg					
3.	D. Jurafsky and J. Martin "Speech and I	Language Processing: An Introduction to					

3. D. Jurafsky and J. Martin "Speech and Language Processing: An Introduction to

4. Natural Language Processing, Computational Linguistics, and Speech Recognition", Third Edition draft C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999

B. T	ech. (Computer Scien	VII Semester ce & Engineering (Artificial Intelli	gence and Mach	ine Learning))
2012	····· (00	7CM7-50 : B.Tech. Project – I	0	
Credit:	2	Μ	ax. Marks: 100 ((IA:60, ETE:40)
0L+0T+	-3P	Mode of ev	aluation: Report	and presentation
		Assessment or Evaluati	ion	
	The ev	aluation criteria for B. Tech.	Project - I	End Term
S. No.		Category Internal Assessmen		
			Max Marks in %	Max Marks in %
1	5	ion, Conceptual Design,		
	Innovativeness, and	utility in actual life application	10%	10%
2	Project Ideation, Project Formulation, and Design		10%	10%
3	• • • •	& Finalization, Project Planning		
	· · ·	Viability for 2 semesters)	10%	10%
4	Technology Used an		10%	10%
5	Demonstration an	ired to justify current semester	30%	30%
6	figure/diagram, writ	and project documentation the report, clarity, use of ing skills, presentation of result, atent application, etc.)	20%	20%
7		(teamwork, punctuality, novelty,	2070	2070
,	etc.)	country, punctuality, noverty,	10%	10%
	, ,	Total	100%	100%

Page 9

	8CM7-50 : B.Tech. P	roject -II			
Credit:	it: 4 Max. Marks: 100 (IA:60, ETE:40				
0L+0T+	+3P M	ode of evaluation: Repor	t and presentation		
	Assessment or Ev	aluation			
	The evaluation criteria for B				
S. No.	Category	Internal Assessment	End Term Examinations		
		Max Marks in %	Max Marks in %		
1	5 1	Design,	1004		
	Innovativeness, and utility in actual life appl		10%		
2	Project Ideation, Project Formulation, and D		10%		
3	Technology Used and Method	10%	10%		
4	Project Execution, Development, Deple Demonstration and Delivery (Workin completeness) required to justify current s work and presentation	g and	30%		
5	Report writing and project docume	entation use of	20%		
6	Professional ethics (teamwork, punctuality, petc.)		10%		
7	Paper Published in reputed journals (SCE Scopus, UGC care or any peer-reviewed j Paper publications (International or M conferences [IEEE, ACM, Springer, etc]) presentations at Hackathon (Institute level or any institute, state or national level	SCIE, ournal), Vational , and SIH) or project			
	presentation competitions. Total	10% 100%	10% 100%		

Approved by academic council meeting held on Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004; Website:<u>https://btu.ac.in</u>