

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE of

B. Tech. (Computer Science & Engineering (Artificial Intelligence)) VII & VIII Semester

[Draft Syllabus Subjected to approval]

Effective for the students admitted in year 2021-22 and onwards Approved by academic council meeting held on

OFFICE OF THE DEAN ACADEMICS

Teaching & Examination Scheme

B. Tech. (Computer Science & Engineering (Artificial Intelligence)) 3rd Year – VII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course Code	Course Title		Iour	'S	Exam Hours		Mark	S	Credit
				L	T	P		IA	ETE	Total	
			TH	EOI	RY						
1	DC	7CA4-01	Deep Learning	3	-	-	3	30	70	100	3
2	UE	University Elective subject Course code and title to be selected from the university elective pool of subjects		3	-	-	3	30	70	100	3
3	DE	7CA5-11 7CA5-12 7CA5-13	GPU Computing Pattern Recognition Generative AI	2	-	-	3	30	70	100	2
Sub Total		8	00	00	-	90	210	300	8		
			PRACTICAL &	SE	SSI	ON	AL				
4	DC	7CA4-21	Deep Learning Lab	-	-	2	-	60	40	100	1
5	UI	7CA7-30	Industrial Training	-	-	1	-	60	40	100	3
	UI	7CA7-50	B.Tech Project - I			3	-	60	40	100	2
6	CCA	7CA8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	1
	Sub Total			00	00	06	-	180	220	400	7
		Tota	1	8	00	06	-	270	430	700	15

L = Lecture, T = Tutorial, P = Practical, IA = Internal Assessment, ETE = End Term Exam, Cr = Credits

Approved by academic council meeting held on Office: Bikaner Technical University, Bikaner

Karni Industrial Area, Pugal Road, Bikaner-334004; Website: https://btu.ac.in

OFFICE OF THE DEAN ACADEMICS

Teaching & Examination Scheme B. Tech. (Computer Science & Engineering (Artificial Intelligence)) 3rd Year – VI Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	ategory Course Course Title Code		Hours		Exam Hours				Credit	
				L	T	P		IA	ETE	Total	
			THI	EOI	RY						
1	UE University Elective subject Course code and title to be selected from the university elective pool of subjects		3	-	_	3	30	70	100	3	
	Sub Total				00	00		30	70	100	3
			PRACTICAL	&	SES	SIC	NAL				
2	DC	8CA4-40	Seminar	-	-	2	-	60	40	100	2
5	UI	8CA7-50	B.Tech Project - II	-	-	3	-	60	40	100	4
12	CCA	8CA8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	2
		Sub To	otal	00	00	05	-	120	180	300	8
		Tota	l	03	00	05	-	150	250	400	11

L = Lecture, T = Tutorial, = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

OFFICE OF THE DEAN ACADEMICS

VII Semester			
B. Tech. (Computer Science & Engineering (Artificial Intelligence))			
7CA4-01: Deep Learning			
Credit: 3 Max. Marks: 100 (IA:30, ETE:70)			
3L+0T+ 0P	End Term Exams: 3 Hours		

Course Objectives:

As a result of successfully completing this course, students will:

- To describe the major differences between deep learning and other types of machine learning algorithms.
- To explain the fundamental methods involved in deep learning.
- To understand various aspects of Deep Earning and its building block.
- To understand and differentiate between the major types of neural network architectures.
- To Select or design neural network architectures for new data problems based on their requirements and problem characteristics and analyze their performance.
- To understand basic working principles and how Deep Learning is used to solve real-world problems

Course Outcomes:

Upon successful completion of the course the students will be able to

- CO-1: Able to learn the fundamental concepts of neural networks and deep neural networks.
- CO-2: Able to understand the working principle of convolution neural networks.
- CO-3: Able to perform hyperparameter tuning. CO-4: Able to analyze and design neural network for real work problem.

CO-5: Able to understand working principle of various types of neural networks.

S. No.	Contents	Hours
1	Introduction to Neural Networks Introduction of artificial neural network and deep learning,	7
	characteristics of neural networks terminology, neurons, perceptron, backpropagation, Basic	
	learning laws, Activation and Loss function - Function approximation, applications	
2	Introduction to Convolution Neural Networks CNN Architecture and Operations, convolutional layer, Pooling layer, Variants of the Convolution Model, Forward and Backward	9
	propagation, Building a Deep Neural Network Improving Deep Neural Networks Training a	
	deep neural network, hyper-parameter tuning, Hidden layers, Generalization Gap – Under-	
	fitting Vs Over-fitting – Optimization, Normalization.	
3	Practical aspects of Deep Learning: Train/Dev / Test sets, Bias/variance, Overfitting and regularization, Linear models and optimization, Vanishing/exploding gradients, Gradient checking – Logistic Regression, Convolution Neural Networks, RNN and Backpropagation – Convolutions and Pooling	9
4	Optimization algorithms: Mini-batch gradient descent, exponentially weighted averages, RMS prop, Learning rate decay, the problem of local optima, Batch norm – Parameter tuning process.	8
5	Neural Network Architectures: Recurrent Neural Networks, Adversarial NN, Spectral CNN, Self-Organizing Maps, Restricted Boltzmann Machines, Long Short-Term Memory Networks (LSTM) and Deep Reinforcement Learning — Tensor Flow, Keras or MatConvNet for implementation	9
	Total	42

- 1. 1. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017 (link:https://www.deeplearningbook.org/)
- 2. 2. Deep Learning Step by Step with Python, N D Lewis, 2016
- 3. Jeep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017
- 4. 4. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017
- 5. James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.
- 6. 6. François Chollet "Deep Learning with Python," First Edition, Manning Publication, 2018
- 7. Neural Networks and Deep Learning, Michael Nielsen, Determination Press (2015) (link: http://neuralnetworksanddeeplearning.com/)

OFFICE OF THE DEAN ACADEMICS

VII Semester			
B. Tech. (Computer Science & Engineering (Artificial Intelligence))			
7CA4-11: GPU Computing			
Credit: 2	Max. Marks: 100 (IA:30, ETE:70)		
2L+0T+ 0P	End Term Exams: 3 Hours		

• Course Objectives:

As a result of successfully completing this course, students will: • Understand parallel programming with graphics processing units (GPUs). • Understand Memory management and mechanism for parallel computing

Course Outcomes:

Upon successful completion of the course, students will be able to

- CO-1: Define and understand terminology commonly used in parallel computing.
- CO-2: Describe common GPU architectures and programming models.
- CO-3: Understand a Given problem and develop an efficient parallel algorithm to solve it.
- CO-4: Understand CUDA memory access mechanism.

S. No.	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	GPU Introduction: To study architecture and capabilities of modern GPUs and learn programming techniques for the GPU such as CUDA programming model. Heterogeneous Parallel Computing, Architecture of a Modern GPU, Speeding Up Real Applications, Parallel Programming Languages and Models.	06
3	History of GPU Computing: Evolution of Graphics Pipelines, The Era of Fixed Function Graphics Pipelines, Evolution of Programmable Real-Time Graphics, Unified Graphics and Computing Processors, GPGPU, Scalable GPUs, Recent Developments, Future Trends. 5	05
4	Introduction to Data Parallelism and CUDA C: Data Parallelism, CUDA Program Structure, A Vector Addition Kernel, Device Global Memory and Data Transfer, Kernel Functions and Threading.	5
5	Data-Parallel Execution Model: CUDA Thread Organization, Mapping Threads to Multidimensional Data, Matrix-Matrix Multiplication—A More Complex Kernel, Synchronization and Transparent Scalability, Assigning Resources to Blocks, Thread Scheduling and Latency Tolerance	6
6	CUDA Memories: Importance of Memory Access Efficiency, CUDA Device Memory Types, A Tiled Matrix – À Matrix Multiplication Kernel, Memory as a Limiting Factor to Parallelism.	5
	Total	28

- 1. Sanders, J. and Kandrot, E., CUDA by Example: An Introduction to General-Purpose GPU Programming, Addison-Wesley Professional (2012) 4th Edition.
- 2. Lirk, D. and Hwu, M., W., Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann (2016) 3rd Edition.
- 3. 3. Hwu, M., W., A GPU Computing Gems Emerald Edition (Applications of GPU Computing Series), Morgan Kaufmann (2011) 1st Edition.

OFFICE OF THE DEAN ACADEMICS

VII Semester				
B. Tech. (Computer Science & Engineering (Artificial Intelligence))				
7CA4-12:Pattern Recognition				
Credit: 2 Max. Marks: 100 (IA:30, ETE:70)				
2L+0T+ 0P	End Term Exams: 3 Hours			

Course Objectives:

As a result of successfully completing this course, students will: • Students should be able to understand soft computing concepts and techniques and foster their abilities in designing and implementing soft computing based solutions for real-world problems..

Course Outcomes:

Upon successful completion of the course, students will be able to

- CO-1: Describe and compare a variety of pattern classification, structural pattern recognition, and pattern classifier combination techniques
- CO-2: Apply pattern recognition techniques to real-world problems such as document analysis and recognition
- CO-3: Summarize, analyze and relate research in the pattern recognition area

S.	Contents	Hour
No.		S
1	Introduction: Objective, scope and outcome of the course.	1
2	Basics Of Probability, Random Processes And Linear Algebra, Bayes Decision Theory: Bayes' theorem, Minimum-error-rate classification, Classifiers, Discriminant functions, Decision surfaces, Normal density and discriminant functions, Discrete Features	7
3	Parameter Estimation Methods : Maximum-Likelihood estimation, Gaussian case, Maximum a Posteriori estimation, Bayesian estimation, Gaussian case	6
4	Unsupervised Learning and Clustering: Criterion functions for clustering, Algorithms for clustering, K-Means, Hierarchical and other methods, Cluster validation, Gaussian mixture models, Expectation-Maximization method for parameter estimation, Maximum entropy estimation	7
5	Sequential Pattern Recognition: Hidden Markov Models (HMMs), Discrete Hmms, Continuous HMMs Nonparametric Techniques For Density Estimation Parzen-Window Method, K-Nearest Neighbor Method 7 Tot	7
	Total	28

Suggested Books:

- 1. Pattern Classification, Richard O. Duda, Peter E. Hart, David G. Stork John Wiley 2001
- 2. Pattern Recognition, Konstantinos Koutroumbas and Sergios Theodoridis 4th Edition., Academic Press 2009
- 3. Pattern Recognition and Machine Learning, Bishop, Christopher, Springer 2006V Raghvan, "Principles of Compiler Design," McGraw-Hill, ISBN:9780070144712

OFFICE OF THE DEAN ACADEMICS

VII Semester B. Tech. (Computer Science & Engineering (Artificial Intelligence))				
7CA4-13:Generative AI				
Credit: 2 Max. Marks: 100 (IA:30, ETE:70)				
2L+0T+ 0P	End Term Exams: 3 Hours			

Course Objectives:

As a result of successfully completing this course, students will: • Students should be able to understand soft computing concepts and techniques and foster their abilities in designing and implementing soft computing based solutions for real-world problems..

Course Outcomes:

Upon successful completion of the course, students will be able to

- CO-1: Describe and compare a variety of pattern classification, structural pattern recognition, and pattern classifier combination techniques
- CO-2: Apply pattern recognition techniques to real-world problems such as document analysis and recognition
- CO-3: Summarize, analyze and relate research in the pattern recognition area

S.	Contents	Hour
No.		S
1	Introduction: Objective, scope and outcome of the course.	1
2	Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.),	7
	Applications of Generative AI (Image Generation, Text Generation, etc.	
3	Generative Models for Computer Vision : Convolutional Neural Networks (CNNs)	6
	for image processing, Generative Adversarial Networks (GANs) for image generation,	
	Variational Autoencoders (VAEs) for image compression and generation, Case studies:	
	Image generation, Image-to-image translation, etc.	
4	Generative Models for Natural Language Processing: Recurrent Neural Networks	7
	(RNNs) for text processing, Transformers for text generation and language modeling,	
	Generative models for text summarization, chatbots, and language translation,	
5	Advanced Generative AI Topics: Generative models for multimodal data (images,	7
	text, audio, etc.), Generative models for sequential data (time series, videos, etc.),	
	Advanced techniques: Style transfer, CycleGAN, etc	
	Total	28
		I

- 1. Generative Deep Learning" by David Foster
- 2. Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- 3. Generative Adversarial Networks" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- 4. Natural Language Processing (almost) from Scratch" by Collobert et al.
- 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg
- 6. Deep Learning for Computer Vision with Python" by Adrian Rosebrock

OFFICE OF THE DEAN ACADEMICS

VII Semester B. Tech. (Computer Science & Engineering (Artificial Intelligence))			
7CA4-21: Deep Learning Lab			
Credit: 1	Max. Marks: 100 (IA:60, ETE:40)		
0L+0T+ 2P	End Term Exams: 2 Hours		

Course Objectives: As a result of successfully completing this course, students will:

- To describe the major differences between deep learning and other types of machine learning algorithms.
- To explain the fundamental methods involved in deep learning.
- To understand various aspects of deep learning and its building block.
- To understand and differentiate between the major types of neural network architectures.
- To Select or design neural network architectures for new data problems based on their requirements and problem characteristics and analyze their performance.
- To understand basic working principles and how Deep Learning is used to solve real-world problems

Course Outcomes: Upon successful completion of the course, students will be able to

- CO-1: Able to learn the fundamental concepts of neural networks and deep neural networks.
- CO-2: Able to understand the working principle of convolution neural networks.
- CO-3: Able to perform hyperparameter tuning.
- CO-4: Able to analyze and design neural network for real work problem.
- CO-5: Able to understand working principle of various types of neural networks

S. No.	List of Experiments
	-
1	Demonstration and implementation of Shallow architecture using Python, TensorFlow and Keras i) Google
	Colaboratory - Cloning GitHub repository, Upload Data, Importing Kaggle's dataset, Basic File operations
	ii) Implementing Perceptron, iii) Digit Classification: Neural network to classify MNIST dataset
2	Basic implementation of a deep Learning models in PyTorch and Tensor Flow. Tune its performance by
	adding additional layers provided by the library.
3	Implement custom operations in PyTorch by using deep learning via gradient descent; recursive chain rule
	(backpropagation); bias-variance tradeoff, regularization; output units: linear, softmax; hidden units: tanh,
	RELU.
4	Implement a simple CNN starting from filtering, Convolution and pooling operations and arithmetic of
	these with Visualization in PyTorch and Tensorflow.
5	ConvNet Architectures: Implement a famous convNet architectures - AlexNet, ZFNet, VGG, C3D,
	GoogLeNet, ResNet, MobileNet-v1.
6	Convolution Neural Network application using TensorFlow and Keras, i) Classification of MNIST Dataset
	using CNN ii) Face recognition using CNN
7	Image denoising (Fashion dataset) using Auto Encoders Handling Color Image in Neural Network aka
	Stacked Auto Encoders (Denoising)
8	Text processing, Language Modeling using RNN
9	Time Series Prediction using RNN
10	Sentiment Analysis using LSTM
11	Image generation using GAN
Sugges	sted Books:

OFFICE OF THE DEAN ACADEMICS

- 1. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017 (link: https://www.deeplearningbook.org/)
- 2. Deep Learning Step by Step with Python, N D Lewis, 2016
- 3. Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017
- 4. 4. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017
- 5. James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.
- 6. François Chollet "Deep Learning with Python," First Edition, Manning Publication, 2018 Neural Networks and Deep Learning, Michael Nielsen, Determination Press (2015) (link: http://neuralnetworksanddeeplearning.com/)

OFFICE OF THE DEAN ACADEMICS

	VII Semester B. Tech. (Computer Science & Engineering (Arti	ficial Intelligenc	e))	
	7CA7-50: B.Tech. Project – I			
Credit:	2 M	ax. Marks: 100 ((IA:60, ETE:40)	
0L+0T-	-3P Mode of eva	Mode of evaluation: Report and presentation		
	Assessment or Evaluati	on		
	The evaluation criteria for B. Tech.	Project - I		
S. No.	Category	Internal	End Term	
		Assessment	Examinations	
		Max Marks	Max Marks in	
		in %	%	
1	Project Motivation, Conceptual Design,			
	Innovativeness, and utility in actual life application	10%	10%	
2	Project Ideation, Project Formulation, and Design	10%	10%	
3	Project Prototyping & Finalization, Project Planning			
	& Timeline (Project Viability for 2 semesters)	10%	10%	
4	Technology Used and Method	10%	10%	
5	Project Execution, Development, Deployment,			
	Demonstration and Delivery (Working and			
	completeness) required to justify current semester			
	work and presentation	30%	30%	
6	Report writing and project documentation			
	(organization of the report, clarity, use of			
	figure/diagram, writing skills, presentation of result,			
	paper publication, patent application, etc.)	20%	20%	
7	Professional ethics (teamwork, punctuality, novelty,			
	etc.)	10%	10%	
	Total	100%	100%	

OFFICE OF THE DEAN ACADEMICS

VIII Semester B. Task (Commuter Science & Engineering (Autificial Intelligence))							
B. Tech. (Computer Science & Engineering (Artificial Intelligence)) 8CA7-50: B.Tech. Project -II							
Credit: 4 Max. Marks: 100 (IA:60, ETE:40							
0L+0T+3P		Mode of evaluation: Report and presentation					
			unu prosenuuron				
Assessment or Evaluation The evaluation criteria for B. Tech. Project - II							
S. No.	I ne eva	Internal End Term					
S. No.		Category	Assessment	Examinations			
			Max Marks in %	Max Marks in			
1	Project Motivat Innovativeness, and	ion, Conceptual Design, utility in actual life application	10%	10%			
2	Project Ideation, Project Formulation, and Design		10%	10%			
3	Technology Used and Method		10%	10%			
4	Demonstration an	Development, Deployment, d Delivery (Working and ired to justify current semester on	30%	30%			
5		and project documentation the report, clarity, use of ing skills, presentation of result, atent application, etc.)	20%	20%			
6	Professional ethics etc.)	teamwork, punctuality, novelty,	10%	10%			
7	Scopus, UGC care Paper publications conferences [IEEE presentations at Hac any institute, st	reputed journals (SCE, SCIE, or any peer-reviewed journal), s (International or National, ACM, Springer, etc]), and kathon (Institute level or SIH) or ate or national level project itions	10%	10%			
presentation competitions. Total			10%	10%			
	1	100/0	100 /0				