

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE of B. Tech. (Data Science) VII & VIII Semester

[Draft Syllabus Subjected to approval]

Effective for the students admitted in year 2021-22 and onwards Approved by academic council meeting held on

Teaching & Examination Scheme

B. Tech. (Data Science)

4rdYear – VII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No	. Category	Course Code	Course Title	Hours		Hours Exam Marks Hours		S	Credit		
		0		L	Т	Р		IA	ETE	Total	
	TH		TH	EOI	RY						
1	DC	7DS4-01	Statistical Modeling and Forecasting	3	-	-	3	30	70	100	3
2	UE	UE University Elective subject Course code and title to be selected from the university elective pool of subjects		3	-	-	3	30	70	100	3
3	DE	7DS5-11 7DS5-12 7DS5-13	Mobile Computing Soft Computing and Evolutionary Algorithms Generative AI	2	-	-	3	30	70	100	2
		Sub To	otal	8	00	00	-	90	210	300	8
			PRACTICAL &	SE	SSI	ON	AL				
4	DC	7DS4-21	Statistical Modeling and Forecasting Lab	-	-	2	-	60	40	100	1
5	UI	7DS7-30	Industrial Training	-	-	1	-	60	40	100	3
	UI	7DS7-50	B.Tech. Project - I	-	-	3	-	60	40	100	2
6	CCA	7DS8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	1
Sub Total			00	00	06	-	180	220	400	7	
Total			8	00	06	-	270	430	700	15	

L = Lecture, T = Tutorial, P = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

Teaching & Examination Scheme

B. Tech. (Data Science)

4rdYear – VIII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course Code	Course Title	Hours		Hours Exam Hours		Marks			Credit
				L	Τ	Р	-	IA	ETE	Total	
			TH	EO	RY						
1	UE University Elective subject Course code and title to be selected from the university elective pool of subjects		3	-	-	3	30	70	100	3	
Sub Total			otal	3	00	00		30	70	100	3
	PRACTICA			&	SES	SIC	DNAL				
10	UI	8DS7-40	Seminar	-	-	2	-	60	40	100	2
	UI	8DS7-50	B.Tech. Project - II	-	-	3	-	60	40	100	4
12	CCA	8DS8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	2
Sub Total			00	00	05	-	120	180	300	8	
Total			03	00	05	-	150	250	400	11	

L = Lecture, T = Tutorial, = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

VII Semester B. Tach. (Data Science)					
	D. 1 7DS4-01: Statist	ical Modeling and Forecasting			
Credit	. 2	May Markey 100 (IA 20 E	FE.7 0)		
Crean	: 5	Max. Marks: 100 (1A:50, E	IE:/0)		
3L+01	:+ 0P	End Term Exams: 3	3 Hours		
Course	e Objectives:				
As a re	sult of successfully completing this cours	se, students will :			
•	Able to understand basic property of the	time series data.			
	Able to use and deploy various models	for time series data			
•	Able to select best model for time series	s data			
Course	e Outcomes:	, cutu			
Upon s	successful completion of the course, stude	ents will be able to			
CO-1 :	Discuss the challenges and their solution	s for Time Series Data.			
CO-2:	Understanding impact of seasonality in t	ime series data.			
CO-3:	Understand role of drift and trend.				
CO-4 :	Understand to working of various mode	ls used for time series data.			
S. No.		Contents	Hours		
1	Basic Properties of time-series	data : Distribution and moments. Stationarity.	7		
-	Autocorrelation. Heteroscedasticity. No	rmality	,		
	Introduction of Time Series Analysis:	Introduction to Time Series and Forecasting, Different			
	types of data, Internal structures of time	e series. Models for time series analysis, Examples of			
	Time series Nature and uses of fore	casting, Forecasting Process, Data for forecasting,			
	Resources for forecasting.				
2	Statistics Background for Forecasti	ng: Graphical Displays, Time Series Plots, Plotting			
	Smoothed Data, Numerical Description	of Time Series Data, Use of Data Transformations and	7		
	Adjustments, General Approach to Tin	ne Series Modelling and Forecasting, Evaluating and			
	Monitoring Forecasting Model Perform	ance.			
	Random walk model: Non-stationarity	and unit-root process, Drift and Trend models			
3	Introduction to Autoregressive mo	dels and forecasting: Autocorrelation and Partial	10		
	autocorrelation, Autoregressive Mov	ing Average (ARMA) Models , Autoregressive			
	Integrated Moving Average (ARIMA)	Models, Forecasting using ARIMA , Seasonal Data,			
	Seasonal ARIMA Models Forecasting u	using Seasonal ARIMA Models			
	Introduction to Vector Auto-regressi	ve (VAR) models: Impulse Response Function (IRF),			
	Error Correction Models, Co-integration	n, Vector ARIMA Models, Vector AR (VAR) Model			
	Model Selection Criteria: Finding the	"BEST" Model, Impulse Response Function to Study			
	the Differences in Models Comparing I	mpulse Response Functions for Competing Models .			
4	Time Series Regression Model: Introd	uction Least Squares Estimation in Linear Regression			
	Models, Statistical Inference in Linear	Regression, Prediction of New Observations, Model	8		
	Adequacy Checking, Variable Selectio	n Methods in Regression, Generalized and Weighted	3		
	Least Squares, Regression Models for G	eneral Time Series Data, Exponential Smoothing, First			
	order and Second order.				
5	Multivariate Time Series Models a	nd Forecasting: Multivariate Time Series Models			
	and Forecasting, Multivariate Station	ary Process	10		
	ranei data models: Fixed-Effect and	kandom-Effect models	-		

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेरतकनीकीविश्वविद्यालय,बीकानेर OFFICE OF THE DEAN ACADEMICS

Forecasting, Principal Component Analysis (PCA) and Factor Analysis	
Total	42

Suggested Books:

- 1. Introduction To Time Series Analysis And Forecasting, 2nd Edition, Wiley Series In Probability And Statistics, By Douglas C. Montgomery, Cheryl L. Jen(2015)
- 2. Master Time Series Data Processing, Visualization, And Modeling Using Python Dr. Avishek Pal Dr. Pks Prakash (2017)
- 3. Chris Brooks "Introductory Econometrics for Finance," Fourth Edition, Cambridge University Press 2019
- 4. Ruey S. Tsay "Analysis of Time-series data," Third Edition, Wiley 2014
- 5. John Fox and Sanford Weisberg "An R Companion to Applied Regression," Third Edition, SAGE 2018
- 6. Yves Croissant and Giovanni Millo "Panel Data Econometrics with R," First Edition, Wiley 2018

VII Semester B. Tech. (Data Science)						
7DS5-11: Mobile Computing						
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)				
	2L+0T+ 0P	End Term Exams: 3 Hours				
Course	e Obiectives:					
As a re	sult of successfully completing this cours	e, students will:				
• To m	ake the student understand the concept o	of the mobile computing paradigm, its novel application	ons, and			
limitati	ons.					
• To u	nderstand the typical mobile networking i	nfrastructure through a popular GSM protocol	1 T			
• Unde	rstand the issues and solutions of various	layers of mobile networks, namely MAC layer, Networ	K Layer			
• To u	nderstand the database issues in mobile et	nvironments & data delivery models				
• Unde	erstand the ad hoc networks and related co	oncepts.				
• To u	nderstand the platforms and protocols use	d in the mobile environment.				
Course	e Outcomes:					
Upon s	uccessful completion of the course, stude	nts will be able to				
CO-1 :	Think and develop a new mobile applicat	ion.				
CO-2 :	Take any new technical issue related to the	nis new paradigm and come up with a solution(s).				
CO-3 :	Develop new ad hoc network application	s and/or algorithms/protocols.				
CO-4 :	Understand & develop any existing or ne	w protocol related to the mobile environment				
S. No.		Contents	Hours			
1	Introduction: Mobile Communication	s Mobile Computing – Paradigm Promises/Novel	5			
1	Applications and Impediments and Arch	nitecture: Mobile and Handheld Devices. Limitations	5			
	of Mobile and Handheld Devices. GSM	1 – Services, System Architecture, Radio Interfaces,				
	Protocols, Localization, Calling, Handow	ver, Security, New Data Services, GPRS				
2	(Wireless) Medium Access Control (M	IAC): Motivation for a specialized MAC (Hidden and	6			
	exposed terminals, Near and far term	inals), SDMA, FDMA, TDMA, CDMA, Wireless				
	LAN/(IEEE 802.11)					
3	Mobile Network Layer: IP and Mobile	e IP Network Layers, Packet Delivery and Handover	6			
	Management, Location Management,	Registration, Tunneling and Encapsulation, Route				
4	Mabile Transport Lavor: Convention	al TCP/IP Protocols Indiract TCP Speeping TCP	6			
4	Mobile TCP Other Transport Layer	Protocols for Mobile Networks Database Issues:	U			
	Database Hoarding & Caching Tech	hniques Client-Server Computing & Adaptation				
	Transactional Models. Ouery processing					
5	Data Dissemination and Synchroniza	tion: Communications Asymmetry, Classification of	5			
	Data Delivery Mechanisms, Data Disso	emination, Broadcast Models, Selective Tuning and				
	Indexing Methods, Data Synchronization	n – Introduction, Software, and Protocols.				
		Total	28			
Sugges	sted Books:					
1. Joche	en Schiller, "Mobile Communications", Addis	son-Wesley, Second Edition, 2009.				
2. Raj Kamal, "Mobile Computing", Oxford University Press, 2007, ISBN: 0195686772						
3. ASU	3. ASOKE K TALUKDER, HASAN AHMED, ROOPA R YAVAGAL, "Mobile Computing, Technology Applications					
4. UWE	E Hansmann, Lother Merk, Martin S. Nicklaus	s, Thomas Stober, "Principles of Mobile Computing," Secon	d			
Edition,	Springer.					
5. "GE	NESIS : Personal Communication Device". G	GENESIS 191A321 Document, 1993.	1004			
o. Inte	mgent venicie righway Systems Projects". L	peparunent of Transportation, Minnesota Document, March	1994.			

Approved by academic council meeting held on Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004; Website:<u>https://btu.ac.in</u>

VII Semester B. Tech. (Data Science)						
7DS5-12: Soft Computing and Evolutionary Algorithms						
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)				
	2L+0T+ 0P	End Term Exams: 3 Hours				
Course	e Objectives:					
As a re	sult of successfully completing this cours	e, students will:				
•	Able to understand basics of Fuzzy Set					
•	Able to understand the concepts of the g	genetic algorithms.				
• Course	Able to understand the idea of the evolu	tionary algorithms.				
Upon	uccessful completion of the course stude	nts will be able to				
CO_{-1}	Comprehend the fuzzy logic and the concept	of fuzziness involved in various systems and fuzzy set theor	* 7			
CO^{-1}	Understand the concepts of furger and the concept	ladae representation using fugue rules, enprovimete recognin	y.			
CO-2.	inference systems, and fuzzy logic	ledge representation using fuzzy fules, approximate reasoning	lg, Iuzzy			
CO-3.	Describe with genetic algorithms and other ra	andom search procedures useful while seeking global optimu	m in self			
00 5.	learning situations	indom search procedures userur while seeking groom optimus	in in sen			
CO-4:	Develop some familiarity with current resear	ch problems and research methods in Soft Computing Techn	iques			
S. No.		Contents	Hours			
1	Introduction to Soft Computing: Ai	ms of Soft Computing-Foundations of Fuzzy Sets	5			
1	Theory-Basic Concepts and Properties of	of Fuzzy Sets- Elements of Fuzzy Mathematics-Fuzzy	5			
	Relations-Fuzzy Logic					
2	Application of Fuzzy Sets: Applicatio	ns of Fuzzy Sets-Fuzzy Modeling – Fuzzy Decision	6			
	Making-Pattern Analysis and Classif	ication-Fuzzy Control Systems-Fuzzy Information				
2	Processing- Fuzzy Robotics.	Constin Algorithm Doord Optimization Dringinla of	6			
3	Genetic Algorithm- Genetic Algorithm	with Directed Mutation- Comparison of Conventional	0			
	and Genetic Search Algorithms Issues	of GA in practical implementation. Introduction to				
	Particle swarm optimization-PSO operation	tors-GA and PSO in engineering applications				
4	Neuro-Fuzzy Technology: Fuzzy Neur	al Networks and their learning-Architecture of Neuro-	6			
	Fuzzy Systems- Generation of Fuzzy I	Rules and membership functions - Fuzzification and				
	Defuzzyfication in Neuro-Fuzzy System	s- Neuro-Fuzzy Identification - Neuro Fuzzy Control-				
	Combination of Genetic Algorithm	with Neural Networks- Combination of Genetic				
5	Algorithms and Fuzzy Logic-Neuro-Fuz	zzy and Genetic Approach in engineering applications.	5			
5	Basic Evolutionary Processes, EV: A S Problem Solvers A Historical Perspectiv	Simple Evolutionary System, Evolutionary Systems as	Э			
	Programming Evolution Strategies A I	Inified View of Simple EAs- A Common Framework				
	Population Size					
	L	Total	28			
Sugges	sted Books:					
1.	An Introduction to Genetic Algorithm Mela	nic Mitchell (MIT Press)				
2.	Evolutionary Algorithm for Solving Multi-o	bjective, Optimization Problems (2nd Edition), Collelo, Lan	nent,			
3	Veldhnizer (Springer) Fuzzy Logic with Engineering Applications	Timothy I Ross (Wiley)				
4.	Sivanandam, Deepa, "Principles of Soft Co	mputing", Wiley				
5.	Jang J.S.R, Sun C.T. and Mizutani E, "Neur	o-Fuzzy and Soft computing", Prentice Hall				
6.	Timothy J. Ross, "Fuzzy Logic with Engine	ering Applications", McGraw Hill				

		VII Semester					
	B. Te	ech. (Data Science)					
7DS5-13: Generative AI							
	Credit: 2	Max. Marks: 100 (IA:30, ETE:70)					
2L+0T+ 0PEnd Term Exams: 3 Hours							
Course	e Objectives:						
As a re	sult of successfully completing this cours	e, students will be:					
•	Understand the fundamentals of genera	ative AI and its applications in computer vision and	natural				
_	language processing.		1				
•	A neluze and evaluate the performance of	enting generative models using deep learning framewor	rks.				
Course	Anaryze and evaluate the performance of Outcomes:	i generative models in various applications.					
Unon s	uccessful completion of the course stude	ents will be able to					
CO-1 .	Design and implement generative models	s for image and text generation, and other applications					
CO-1.	Understand the strengths and limitations	of various generative models and he able to select appreciations.	ropriata				
CO-2.	models for specific tasks	or various generative models and be able to select app	opriate				
CO 2.	Develop problem colving shills using an	nonstine. All and he able to anyly them to used mould are	h 1				
CO-3:	Develop problem-solving skills using get	nerative AI and be able to apply them to real-world pro	blems.				
CO-4:	Critically evaluate the performance of ge	nerative models and develop strategies for improvement	it.				
S. No.		Contents	Hours				
1	Introduction: Objective, scope and out	come of the course	1				
2	Overview of Generative AI: Types Applications of Generative AI (Image G	of Generative Models (VAE, GAN, RNN, etc.),	6				
3	Generative Models for Computer V	ision : Convolutional Neural Networks (CNNs) for	7				
_	image processing, Generative Adversaria	al Networks (GANs) for image generation, Variational					
	Autoencoders (VAEs) for image compre	ession and generation, Case studies: Image generation,					
	Image-to-image translation, etc.						
4	Generative Models for Natural Langu	age Processing: Recurrent Neural Networks (RNNs)	7				
	for text processing, Transformers for	text generation and language modeling, Generative					
	models for text summarization, chatbots	, and language translation					
5	Advanced Generative AI Topics: Ge	enerative models for multimodal data (images, text,	7				
	audio, etc.), Generative models for se	equential data (time series, videos, etc.), Advanced					
	techniques: Style transfer, CycleGAN	T ()	20				
		1 otal	28				
Sugges	sted Books:						
1.	Generative Deep Learning: Teaching M O'Reilly Media	achines to Paint, Write, Compose, and Play by David F	oster,				
2.	Deep Learning by Ian Goodfellow, Yosh	hua Bengio, and Aaron Courville					
3.	Generative Adversarial Networks by Iar	n Goodfellow, Yoshua Bengio, and Aaron Courville					
4.	Natural Language Processing (almost) f	rom Scratch" by Collobert et al.					
5	Neural Network Methods for Natural Language Processing" by Yoav Goldberg						
5.		8.8					

VII Semester B. Tech. (Data Science)							
7DS4-21: Statistical Modeling and Forecasting Lab							
Credit	:1	Max. Marks: 100 (IA:60, ETE:40)					
0L+0T	T+ 2P	End Term Exams: 2 Hours					
Cours As a re	Course Objectives:						
•	Able to understand basic property of tim	ne-series data.					
•	Able to handle seasonality and trend in	time series data.					
•	Able to use and deploy various models	for time series data.					
•	Able to select best model for time series	s data.					
Cours	e Outcomes:						
Upon s	successful completion of the course, stude	ents will be able to					
CO-1:	Discuss the challenges and their solution	s for Time Series Data.					
CO-2:	Understanding impact of seasonality in t	ime series data.					
CO-3:	Understand role of drift and trend.						
CO-4 :	Understand to working of various mode	ls used for time series data.					
S. No.	L	ist of Experiments					
1	Cleaning, Preprocessing and Handli	ng Time Series Data					
	• Time Series Data Cleaning						
	 Loading and Handling Times series data 						
	Preprocessing Techniques						
2	How to Checking Stationarity of a	Fime Series and making Time Series data Stationary					
	Estimating & Eliminating Trend.						
	• Aggregation						
	• Smoothing						
	Polynomial Fitting						
	Eliminating Trend and Seasonality						
	• Differencing						
2							
5	1 Ime Series analysis	is data					
	 a) Moving Average time analysis b) Smoothing the Time analysis 	ns uata.					
	Check out the Time series Linear and	d non-linear trends					
4	Time Series Modelling and Forecas	ting					
т	 Moving average 	ting					
	 Exponential smoothing 						
	• ARIMA						
	Seasonal autoregressive integrated n	noving average model (SARIMA)					
5	Dependence Techniques						
	Multivariate Analysis of Var	iance and Covariance					
	Canonical Correlation Analy	sis					
	Structural Equation Modeling	g					
	Inter-Dependence Techniques						
	Factor Analysis						
	Cluster Analysis						
	Approved by academic council meeting held on						

Office: Bikaner Technical University, Bikaner

Karni Industrial Area, Pugal Road, Bikaner-334004; Website:<u>https://btu.ac.in</u>

Suggested Books:

- 1. Introduction To Time Series Analysis And Forecasting, 2nd Edition, Wiley Series In Probability And Statistics, By Douglas C. Montgomery, Cheryl L. Jen(2015)
- 2. Master Time Series Data Processing, Visualization, And Modeling Using Python Dr. Avishek Pal Dr. Pks Prakash (2017)
- 3. Chris Brooks "Introductory Econometrics for Finance," Fourth Edition, Cambridge University Press 2019
- 4. Ruey S. Tsay "Analysis of Time-series data," Third Edition, Wiley 2014
- 5. John Fox and Sanford Weisberg "An R Companion to Applied Regression," Third Edition, SAGE 2018
- 6. Yves Croissant and Giovanni Millo "Panel Data Econometrics with R," First Edition, Wiley 2018

VII Semester B. Tech. (Data Science)								
	7DS7-50 : B.Tech. Project – I							
Credit:	2	Μ	ax. Marks: 100 (IA:60, ETE:40)				
0L+0T+	-3P	Mode of ev	aluation: Report	and presentation				
		Assessment or Evaluati	on					
	The ev	aluation criteria for B. Tech.	Project - I					
S. No.		Category	IA marks bifurcation	ETE marks bifurcation				
		Max Marks in %	Max Marks in %					
1	Project Motivat Innovativeness, and	ion, Conceptual Design, utility in actual life application	10%	10%				
2	Project Ideation, Project Formulation, and Design		10%	10%				
3	Project Prototyping & Timeline (Project	& Finalization, Project Planning Viability for 2 semesters)	10%	10%				
4	Technology Used an	nd Method	10%	10%				
5	Project Execution Demonstration an completeness) requi work and presentation	Development, Deployment, d Delivery (Working and ired to justify current semester on	30%	30%				
6	Report writing (organization of figure/diagram, writ paper publication, p	and project documentation the report, clarity, use of ing skills, presentation of result, atent application, etc.)	20%	20%				
7	7 Professional ethics (teamwork, punctuality, novelty, etc.) 10%			10%				
	7	otal	100%	100%				

VIII Semester B. Tech. (Data Science)								
	8DS7-50 : B.Tech. Project -II							
Credit:	4	М	ax. Marks: 100 (IA:60, ETE:40)				
0L+0T+	-3P	Mode of eva	aluation: Report	and presentation				
		Assessment or Evaluati	on					
	The eva	aluation criteria for B. Tech.	Project - II					
S. No.		Category	IA marks bifurcation	ETE marks bifurcation				
			Max Marks in %	Max Marks in %				
1	Project Motivat	ion, Conceptual Design,	100/	1.004				
	Innovativeness, and	utility in actual life application	10%	10%				
2	Project Ideation, Project Formulation, and Design		10%	10%				
3	Technology Used at	nd Method	10%	10%				
4	Demonstration an completeness) requ	d Delivery (Working and ired to justify current semester	2004	2004				
~	work and presentation	on	30%	30%				
5	Report writing (organization of figure/diagram, writ paper publication, p	and project documentation the report, clarity, use of ing skills, presentation of result, atent application, etc.)	20%	20%				
6	Professional ethics (teamwork, punctuality, novelty, etc.)		10%	10%				
7	Paper Published in Scopus, UGC care Paper publications conferences [IEEE presentations at Hac any institute, st	reputed journals (SCE, SCIE, or any peer-reviewed journal), s (International or National , ACM, Springer, etc]), and kathon (Institute level or SIH) or ate or national level project	100/	100/				
	presentation compet	ations.	10%	10%				
	ſ	otal	100%	100%				