

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE of

B. Tech. (Machine Learning and Computing) VII & VIII Semester

[Draft Syllabus Subjected to approval]

Effective for the students admitted in year 2021-22 and onwards Approved by academic council meeting held on

OFFICE OF THE DEAN ACADEMICS

Teaching & Examination Scheme B. Tech. (Machine Learning and Computing) 4rd Year – VII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category	Course	Course Title	_	lour		Exam		Mark		Credit
		Code		L	Т	P	Hours	IA	ETE	Total	
			THI	EOI	RY						<u> </u>
1	DC	7MC4-01	Deep Learning	3	-	-	3	30	70	100	3
2	UE	University Elective subject Course code and title to be selected from the university elective pool of subjects		3	-	-	3	30	70	100	3
3	DE	7MC5-11 7MC5-12 7MC5-13	Natural Language Processing Pattern Recognition Generative AI	2	-	-	3	30	70	100	2
Sub Total		8	00	00	-	90	210	300	8		
			PRACTICAL &	SE	SSI	ON	AL				
4	DC	7MC4-21	Deep Learning Lab	-	-	2	-	60	40	100	1
5	UI	7MC7-30	Industrial Training	-	-	1	-	60	40	100	3
	UI	7MC7-50	B.Tech Project - I			3	-	60	40	100	2
6	CCA	7MC8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	1
	Sub Total			00	00	06	-	180	220	400	7
	Total			8	00	06	-	270	430	700	15

L = Lecture, T = Tutorial, P = Practical, IA = Internal Assessment, ETE = End Term Exam, Cr = Credits

OFFICE OF THE DEAN ACADEMICS

Teaching & Examination Scheme B. Tech. (Machine Learning and Computing) 4rd Year – VIII Semester

(Effective for the students admitted in year 2021-22 and onward)

S. No.	Category					Exam Marks Hours			Credit		
				L	Т	P		IA	ETE	Total	
			THI	EOI	RY						
1	1 UE University Elective subject Course code and title to be selected from the university elective pool of subjects		3	-	-	3	30	70	100	3	
	Sub Total 3 00 00 30 70 100 3					3					
			PRACTICAL	&	SES	SIC	NAL				
2	DC	8MC4-40	Seminar	-	-	2	-	60	40	100	2
5	UI	8MC7-50	B.Tech Project - II	1	-	3	-	60	40	100	4
12	CCA	8MC8-00	SODECA / Co-Curricular Activity	-	-	-	-	-	100	100	2
	Sub Total			00	00	05	-	120	180	300	8
	Total			03	00	05	-	150	250	400	11

L = Lecture, T = Tutorial, = Practical, IA=Internal Assessment, ETE=End Term Exam, Cr=Credits

OFFICE OF THE DEAN ACADEMICS

VII Semester				
B. Tech. (Machine Learning and Computing)				
7MC4-01: Deep Learning				
Credit: 3 Max. Marks: 100 (IA:30, ETE:70)				
3L+0T+ 0P	End Term Exams: 3 Hours			

• Course Objectives:

As a result of successfully completing this course, students will:

- To describe the major differences between deep learning and other types of machine learning algorithms.
- To explain the fundamental methods involved in deep learning.
- To understand various aspects of Deep Earning and its building block.
- To understand and differentiate between the major types of neural network architectures.
- To Select or design neural network architectures for new data problems based on their requirements and problem characteristics and analyze their performance.
- To understand basic working principles and how Deep Learning is used to solve real-world problems

Course Outcomes:

Upon successful completion of the course the students will be able to

- CO-1: Able to learn the fundamental concepts of neural networks and deep neural networks.
- CO-2: Able to understand the working principle of convolution neural networks.
- CO-3: Able to perform hyperparameter tuning. CO-4: Able to analyze and design neural network for real work problem.

CO-5: Able to understand working principle of various types of neural networks.

S. No.	Contents	Hours
1	Introduction to Neural Networks Introduction of artificial neural network and deep learning,	7
	characteristics of neural networks terminology, neurons, perceptron, backpropagation, Basic	
	learning laws, Activation and Loss function - Function approximation, applications	
2	Introduction to Convolution Neural Networks CNN Architecture and Operations,	9
	convolutional layer, Pooling layer, Variants of the Convolution Model, Forward and Backward	
	propagation, Building a Deep Neural Network Improving Deep Neural Networks Training a	
	deep neural network, hyper-parameter tuning, Hidden layers, Generalization Gap – Under-	
	fitting Vs Over-fitting – Optimization, Normalization.	
3	Practical aspects of Deep Learning: Train/Dev / Test sets, Bias/variance, Overfitting and	9
	regularization, Linear models and optimization, Vanishing/exploding gradients, Gradient	
	checking – Logistic Regression, Convolution Neural Networks, RNN and Backpropagation –	
	Convolutions and Pooling	
4	Optimization algorithms: Mini-batch gradient descent, exponentially weighted averages,	8
	RMS prop, Learning rate decay, the problem of local optima, Batch norm – Parameter tuning	
	process.	
5	Neural Network Architectures: Recurrent Neural Networks, Adversarial NN, Spectral CNN,	9
	Self-Organizing Maps, Restricted Boltzmann Machines, Long Short-Term Memory Networks	
	(LSTM) and Deep Reinforcement Learning – Tensor Flow, Keras or MatConvNet for	
	implementation	
	Total	42

- 1. 1. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017 (link:https://www.deeplearningbook.org/)
- 2. 2. Deep Learning Step by Step with Python, N D Lewis, 2016
- 3. Jeep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017
- 4. 4. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017
- 5. James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.
- 6. 6. François Chollet "Deep Learning with Python," First Edition, Manning Publication, 2018
- 7. Neural Networks and Deep Learning, Michael Nielsen, Determination Press (2015) (link: http://neuralnetworksanddeeplearning.com/)

OFFICE OF THE DEAN ACADEMICS

VII Semester				
B. Tech. (Machine Learning and Computing)				
7MC4-11: Natural Language Processing				
Credit: 2 Max. Marks: 100 (IA:30, ETE:70)				
2L+0T+ 0P	End Term Exams: 3 Hours			

Course Objectives: As a result of successfully completing this course, students will:

- Able to study language and the tools that are available to efficiently study
- Analyze large collections of text and should learn about the effects of electronic communication on our language.

Course Outcomes: Upon successful completion of the course, students will be able to

- CO-1: Learn about major NLP issues and solutions
- CO-2: Become agile with NLP programming.
- CO-3: Be able to asses NLP problems

CO-4: Understand Natural language understanding, processing, generation

S. No.	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction: A computational framework for natural language, description of English or an Indian language in the frame work, lexicon, algorithms and data structures for implementation	5
	of the framework, Finite state automata. Applications like machine translations.	
3	Word Level and Syntactic Analysis: Word Level Analysis: Regular Expressions, Finite-State Automata, Morphological Parsing, Spelling Error Detection and correction, Words and	5
	Word classes, Part-of Speech Tagging. Syntactic Analysis: Context-free Grammar, Constituency, ParsingProbabilistic Parsing. Machine-readable dictionaries and lexical databases, RTN, ATN	
4	Semantic Analysis: Semantic Analysis: Meaning Representation, Lexical Semantics, Ambiguity, Word Sense Disambiguation. Discourse Processing: cohesion, Reference Resolution, Discourse Coherence and Structure. Knowledge Representation, reasoning.	5
5	Natural Language Generation: Natural Language Generation (NLG): Architecture of NLG Systems, Generation Tasks and Representations, Application of NLG. Machine Translation: Problems in Machine Translation, Characteristics of Indian Languages, Machine Translation Approaches, Translation involving Indian Languages	6
6	Information Retrieval and Lexical Resources : Information Retrieval: Design features of Information Retrieval Systems, Classical, Non-classical, Alternative Models of Information Retrieval, valuation Lexical Resources: World Net,Frame Net, Stemmers, POS Tagger.	6
	Total	28

- 1 Natural Language understanding by James Allen, Pearson Education 2008
- 2. NLP: A Paninian Perspective by Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal, Prentice Hall
- 3. Meaning and Grammar by G. Chirchia and S. McConnell Ginet, MIT Press
- 4. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition by Daniel Jurafsky and James H. Martin, Pearson Education
- 5. Natural language processing in Prolog by Gazdar, & Mellish, Addison-Wesley

OFFICE OF THE DEAN ACADEMICS

VII Semester				
B. Tech. (Machine Learning and Computing)				
7MC4-12:Pattern Recognition				
Credit: 2 Max. Marks: 100 (IA:30, ETE:70)				
2L+0T+ 0P	End Term Exams: 3 Hours			

Course Objectives:

As a result of successfully completing this course, students will: • Students should be able to understand soft computing concepts and techniques and foster their abilities in designing and implementing soft computing based solutions for real-world problems..

Course Outcomes:

Upon successful completion of the course, students will be able to

- CO-1: Describe and compare a variety of pattern classification, structural pattern recognition, and pattern classifier combination techniques
- CO-2: Apply pattern recognition techniques to real-world problems such as document analysis and recognition
- CO-3: Summarize, analyze and relate research in the pattern recognition area

S.	Contents	Hour
No.		S
1	Introduction: Objective, scope and outcome of the course.	1
2	Basics Of Probability, Random Processes And Linear Algebra, Bayes Decision Theory: Bayes' theorem, Minimum-error-rate classification, Classifiers, Discriminant functions, Decision surfaces, Normal density and discriminant functions, Discrete Features	7
3	Parameter Estimation Methods : Maximum-Likelihood estimation, Gaussian case, Maximum a Posteriori estimation, Bayesian estimation, Gaussian case	6
4	Unsupervised Learning and Clustering: Criterion functions for clustering, Algorithms for clustering, K-Means, Hierarchical and other methods, Cluster validation, Gaussian mixture models, Expectation-Maximization method for parameter estimation, Maximum entropy estimation	7
5	Sequential Pattern Recognition: Hidden Markov Models (HMMs), Discrete Hmms, Continuous HMMs Nonparametric Techniques For Density Estimation Parzen-Window Method, K-Nearest Neighbor Method 7 Tot	7
	Total	28

Suggested Books:

- 1. Pattern Classification, Richard O. Duda, Peter E. Hart, David G. Stork John Wiley 2001
- 2. Pattern Recognition, Konstantinos Koutroumbas and Sergios Theodoridis 4th Edition., Academic Press 2009
- 3. Pattern Recognition and Machine Learning, Bishop, Christopher, Springer 2006V Raghvan, "Principles of Compiler Design," McGraw-Hill, ISBN:9780070144712

OFFICE OF THE DEAN ACADEMICS

VII Semester B. Tech. (Machine Learning and Computing)				
7MC4-13:Generative AI				
Credit: 2 Max. Marks: 100 (IA:30, ETE:70)				
2L+0T+ 0P	End Term Exams: 3 Hours			

Course Objectives:

As a result of successfully completing this course, students will: • Students should be able to understand soft computing concepts and techniques and foster their abilities in designing and implementing soft computing based solutions for real-world problems..

Course Outcomes:

Upon successful completion of the course, students will be able to

- CO-1: Describe and compare a variety of pattern classification, structural pattern recognition, and pattern classifier combination techniques
- CO-2: Apply pattern recognition techniques to real-world problems such as document analysis and recognition
- CO-3: Summarize, analyze and relate research in the pattern recognition area

S.	Contents	Hour
No.		s
1	Introduction: Objective, scope and outcome of the course.	1
2	Overview of Generative AI: Types of Generative Models (VAE, GAN, RNN, etc.),	7
	Applications of Generative AI (Image Generation, Text Generation, etc.	
3	Generative Models for Computer Vision : Convolutional Neural Networks (CNNs)	6
	for image processing, Generative Adversarial Networks (GANs) for image generation,	
	Variational Autoencoders (VAEs) for image compression and generation, Case studies:	
	Image generation, Image-to-image translation, etc.	
4	Generative Models for Natural Language Processing: Recurrent Neural Networks	7
	(RNNs) for text processing, Transformers for text generation and language modeling,	
	Generative models for text summarization, chatbots, and language translation,	
5	Advanced Generative AI Topics: Generative models for multimodal data (images,	7
	text, audio, etc.), Generative models for sequential data (time series, videos, etc.),	
	Advanced techniques: Style transfer, CycleGAN, etc	
	Total	28

- 1. Generative Deep Learning" by David Foster
- 2. Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- 3. Generative Adversarial Networks" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- 4. Natural Language Processing (almost) from Scratch" by Collobert et al.
- 5. Neural Network Methods for Natural Language Processing" by Yoav Goldberg
- 6. Deep Learning for Computer Vision with Python" by Adrian Rosebrock

OFFICE OF THE DEAN ACADEMICS

VII Semester B. Tech. (Machine Learning and Computing)				
7MC4-21: Deep Learning Lab				
Credit: 1	Max. Marks: 100 (IA:60, ETE:40)			
0L+0T+ 2P	End Term Exams: 2 Hours			

Course Objectives: As a result of successfully completing this course, students will:

- To describe the major differences between deep learning and other types of machine learning algorithms.
- To explain the fundamental methods involved in deep learning.
- To understand various aspects of deep learning and its building block.
- To understand and differentiate between the major types of neural network architectures.
- To Select or design neural network architectures for new data problems based on their requirements and problem characteristics and analyze their performance.
- To understand basic working principles and how Deep Learning is used to solve real-world problems

Course Outcomes: Upon successful completion of the course, students will be able to

- CO-1: Able to learn the fundamental concepts of neural networks and deep neural networks.
- CO-2: Able to understand the working principle of convolution neural networks.
- CO-3: Able to perform hyperparameter tuning.
- CO-4: Able to analyze and design neural network for real work problem.
- CO-5: Able to understand working principle of various types of neural networks

S. No.	List of Experiments
1	Demonstration and implementation of Shallow architecture using Python, TensorFlow and Keras i) Google Colaboratory - Cloning GitHub repository, Upload Data, Importing Kaggle's dataset, Basic File operations ii) Implementing Perceptron, iii) Digit Classification: Neural network to classify MNIST dataset
2	Basic implementation of a deep Learning models in PyTorch and Tensor Flow. Tune its performance by adding additional layers provided by the library.
3	Implement custom operations in PyTorch by using deep learning via gradient descent; recursive chain rule (backpropagation); bias-variance tradeoff, regularization; output units: linear, softmax; hidden units: tanh, RELU.
4	Implement a simple CNN starting from filtering, Convolution and pooling operations and arithmetic of these with Visualization in PyTorch and Tensorflow.
5	ConvNet Architectures: Implement a famous convNet architectures - AlexNet, ZFNet, VGG, C3D, GoogLeNet, ResNet, MobileNet-v1.
6	Convolution Neural Network application using TensorFlow and Keras, i) Classification of MNIST Dataset using CNN ii) Face recognition using CNN
7	Image denoising (Fashion dataset) using Auto Encoders Handling Color Image in Neural Network aka Stacked Auto Encoders (Denoising)
8	Text processing, Language Modeling using RNN
9	Time Series Prediction using RNN
10	Sentiment Analysis using LSTM
11	Image generation using GAN
Sugge	sted Books:

- 1. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017 (link: https://www.deeplearningbook.org/)
- 2. Deep Learning Step by Step with Python, N D Lewis, 2016
- Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017
- 4. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017

OFFICE OF THE DEAN ACADEMICS

- 5. James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.
- 6. François Chollet "Deep Learning with Python," First Edition, Manning Publication, 2018 Neural Networks and Deep Learning, Michael Nielsen, Determination Press (2015) (link: http://neuralnetworksanddeeplearning.com/)

OFFICE OF THE DEAN ACADEMICS

VII Semester B. Tech. (Machine Learning and Computing)						
		MC7-50 : B.Tech. Project – I (BTP				
Credit: 2 M			(ax. Marks: 100 (IA:60, ETE:40)			
0L+0T+3P		Mode of evaluation: Report and presentation				
		Assessment or Evaluati	on			
The evaluation criteria for B. Tech. Project - I						
S. No.	Category		Internal	End Term		
			Assessment	Examinations		
			Max Marks	Max Marks in		
1	D '		in %	%		
1	Project Motivat	, ,	10%	10%		
2	Innovativeness, and utility in actual life application Project Ideation, Project Formulation, and Design		10%	10%		
3	Project Prototyping & Finalization, Project Planning		1070	1070		
3		Viability for 2 semesters)	10%	10%		
4	Technology Used and Method		10%	10%		
5	Project Execution	Development, Deployment, d Delivery (Working and				
		ired to justify current semester	30%	30%		
6	Report writing	and project documentation	3070	3070		
	` U	the report, clarity, use of ing skills, presentation of result,				
		atent application, etc.)	20%	20%		
7		teamwork, punctuality, novelty,				
	etc.)		10%	10%		
	7	100%	100%			

OFFICE OF THE DEAN ACADEMICS

VIII Semester B. Tech. (Machine Learning and Computing)						
	8MC7-50 : B.Tech. Project -II					
Credit:	4 M	(ax. Marks: 100 (IA:60, ETE:40)				
0L+0T-	+3P Mode of ev	Mode of evaluation: Report and presentation				
	Assessment or Evaluati	ion				
	The evaluation criteria for B. Tech. Project - II					
S. No.	Category	Internal Assessment	End Term Examinations			
		Max Marks in %	Max Marks in			
1	Project Motivation, Conceptual Design, Innovativeness, and utility in actual life application	10%	10%			
2	Project Ideation, Project Formulation, and Design	10%	10%			
3	Technology Used and Method	10%	10%			
4	Project Execution, Development, Deployment, Demonstration and Delivery (Working and completeness) required to justify current semester work and presentation	30%	30%			
5	Report writing and project documentation (organization of the report, clarity, use of figure/diagram, writing skills, presentation of result, paper publication, patent application, etc.)	20%	20%			
6	Professional ethics (teamwork, punctuality, novelty, etc.)	10%	10%			
7	Paper Published in reputed journals (SCE, SCIE, Scopus, UGC care or any peer-reviewed journal), Paper publications (International or National conferences [IEEE, ACM, Springer, etc]), and presentations at Hackathon (Institute level or SIH) or any institute, state or national level project					
	presentation competitions.	10%	10%			
	Total	100%	100%			