Scheme & Syllabus of

UNDERGRADUATE DEGREE COURSE

B.Tech. VII & VIII Semester

Electrical and Electronics Engineering

Bikaner Technical University, Bikaner Effective from session: 2021 – 2022

Teaching & Examination Scheme

B.Tech. : Electrical and Electronics Engineering 4th Year - VII Semester

SN	Category		Course		Hours per Week		Marks				Cr
	anoogo y	Code	Name	L	Т	Р	Exm Hrs	IA	ET E	Total	
1		7EX5-11	Digital Signal Processing.								
2	PEC	7EX5-12	Digital Control System.	3	0	0	3	30	120	150	3
3		7EX5-13	Image Processing and Pattern Recognitation			-					
4	OE		Open Elective-I	3	0	0	3	30	120	150	3
			Sub total	6	0	0		60	240	300	6
			PRACTICAL & SESSI	I <mark>ON</mark> A	٩L						
5	PCC	7EX4-21	DBMS Lab	0	0	4	2	60	40	100	2
6	РСС	7EX4-22	Advanced Control System Lab	0	0	4	2	60	40	100	2
7	PSIT	7EX7-30	Industrial Training	1	0	0		75	50	125	2.5
8		7EX7-40	Seminar	2	0	0		60	40	100	2
9	SODECA	7EX8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			25	25	0.5
			Sub total	3	0	8		255	195	450	9
			TOTAL of VII SEMESTER	9	0	8		315	435	750	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment The strike to th

BIKANER TECHNICAL UNIVERSITY, BIKANER Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

Teaching & Examination Scheme B.Tech. : Electrical and Electronics Engineering 4th Year - VIII Semester

SN	Category		Course		Hours per Week		Marks				Cr
	5,	Code	Name	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	PCC	8EX4-01	Digital Communication and Information Theory	3	0	0	3	30	120	150	3
2	OE		Open Elective-II	3	0	0	3	30	120	150	3
			Sub Total	6	0	0		60	240	300	6
			PRACTICAL & SESS	ION	AL						
3	PCC	8EX4-21	Embedded Systems Lab	0	0	4		60	40	100	2
6	Project	8EX7-50	Project	3	0	0		210	140	350	7
7	SODECA	8EX8-00	SODECA	0	0	0		0	25	25	0.5
			Total	3	0	4		270	205	475	9.5
	TOTAL of VII SEMESTER			9	0	4		330	445	775	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Subject Code	Title	Subject Code	Title
	Open Elective - I	Code	Open Elective - II
	*		open Elective - II
7AG6-60.1	Human Engineering and Safety	8AG6-60.1	Energy Management
7AG6-60.2	Environmental Engineering and Disaster Management	8AG6-60.2	Waste and By-product Utiliza- tion
7AN6-60.1	Aircraft Avionic System	8AN6-60.1	Finite Element Methods
7AN6-60.2	Non-Destructive Testing	8AN6-60.2	Factor of Human Interactions
7CH6-60.1	Optimization Techniques	8CH6-60.1	Refinery Engineering Design
7CH6-60.2	Sustainable Engineering	8CH6-60.2	Fertilizer Technology
7CR6-60.1	Introduction to Ceramic Science & Technology	8CR6-60.1	Electrical and Electronic Ce- ramics
7CR6-60.2	Plant, Equipment and Fur- nace Design	8CR6-60.2	Biomaterials
7CE6-60.1	Environmental Impact Analysis	8CE6-60.1	Composite Materials
7CE6-60.2	Disaster Management	8CE6-60.2	Fire and Safety Engineering
7CS6-60.1	Quality Management/ISO 9000	8CS6-60.1	Big Data Analytics
7CS6-60.2	Cyber Security	8CS6-60.2	IPR, Copyright and Cyber Law of India
7EC6-60.1	Principle of Electronic communication	8EC6-60.1	Industrial and Biomedical applications of RF Energy
7EC6-60.2	Micro and Smart System Technology	8EC6-60.2	Robotics and control
7ME6-60.1	Finite Element Analysis	8ME6-60.1	Operations Research
7ME6-60.2	Quality Management	8ME6-60.2	Simulation Modeling and Anal- ysis
7MI6-60.1	Rock Engineering	8MI6-60.1	Experimental Stress Analysis
7MI6-60.2	Mineral Processing	8MI6-60.2	Maintenance Management
7PE6-60.1	Pipeline Engineering	8PE6-60.1	Unconventional Hydrocarbon Resources
7PE6-60.2	Water Pollution control En- gineering	8PE6-60.2	Energy Management & Policy
7TT6-60.1	Technical Textiles	8TT6-60.1	Material and Human Resource Management
7TT6-60.2	Garment Manufacturing Technology	8TT6-60.2	Disaster Management

Credit: 3

BIKANER TECHNICAL UNIVERSITY, BIKANER Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EX5-11: DIGITAL SIGNAL PROCESSING

Max. Marks: 150(IA: 30, ETE:120)

3L+(3L+0T+0PEnd Term Exam: 3		
SN	CONTENTS	Hours	
1	Introduction: Objective, scope and outcome of the course.	1	
2	Discrete-time signals and systems Discrete time signals and systems: Sequences; representation of sig- nals on orthogonal basis; Representation of discrete systems using difference equations, Samplingand reconstruction of signals - aliasing; Sampling theorem and Nyquist rate	08	
3	Z-transform z-Transform, Region of Convergence, Analysis of Linear Shift Invariant systems using ztransform, Properties of z-transform for causal sig- nals, Interpretation of stability in z-domain, Inverse z-transforms.	06	
4	Discrete Fourier Transform Frequency Domain Analysis, Discrete Fourier Transform (DFT), Prop- erties of DFT, Connvolution of signals, Fast Fourier Transform Algorithm, Parseval'sIdentity, Implementation of Discrete Time Systems	10	
5	Design of Digital filters Design of FIR Digital filters: Window method, Park-McClellan's me- thod. Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic Approximations; Low-pass, Band-pass, Bandstop and High-pass fil- ters. Effect of finite register length in FIR filter design. Parametric and non- parametric spectral estimation. Introduction to multi-rate signal processing	11	
6	Applications of Digital Signal Processing Correlation Functions and Power Spectra, Stationary Processes, Op- timal filtering using ARMA Model, Linear Mean-Square Estimation, Wiener Filter.	06	
	TOTAL		

Tex	t/Reference Books
1	S. K. Mitra, "Digital Signal Processing: A computer based approach", McGrawHill,
	2011.
2	A.V. Oppenheim and R. W. Schafer, "Discrete Time Signal Processing", PrenticeHall,
	1989.
3	J. G. Proakis and D.G. Manolakis, "Digital Signal Processing: Principles, Algo-
	rithms And Applications", Prentice Hall, 1997.
4	L. R. Rabiner and B. Gold, "Theory and Application of Digital SignalProcessing",
	Prentice Hall, 1992.
5	J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
6	D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing", John
	Wiley & Sons, 1988.

ETE 400)

7EX5-12: DIGITAL CONTROL SYSTEM

Credit: 3 Max. Marks: 150(IA: 30, E		'E:120)
3L+(0T+0P End Term Exam: 3	Hours
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Discrete Representation of Continuous Systems Basics of Digital Con- trol Systems. Discrete representation of continuous systems. Sample and hold circuit. Mathematical Modelling of sample and hold circuit. Effects of Sampling and Quantization. Choice of sampling frequency. ZOH equivalent.	05
3	Discrete System Analysis Z-Transform and Inverse Z Transform for analyzing discrete time systems. Pulse Transfer function. Pulse transfer function of closed loop systems. Mapping from s-plane to z plane. Solu- tion of Discrete time systems. Time response of discrete time system.	06
4	Stability of Discrete Time System Stability analysis by Jury test. Stabil- ity analysis using bilinear transformation. Design of digital control sys- tem with dead beat response. Practical issues with dead beat response design.	06
5	State Space Approach for discrete time systems State space models of discrete systems, State space analysis. Lyapunov Stability. Controllability, reach-ability, Reconstructibility and observability analysis. Effect of pole zero cancellation on the controllability & observability	06
6	Design of Digital Control System Design of Discrete PID Controller, De- sign of discrete state feedback controller. Design of set point tracker. Design of Discrete Observer for LTI System. Design of Discrete compen- sator.	05
7	Discrete output feedback control Design of discrete output feedback control. Fast output sampling (FOS) and periodic output feedback con- troller design for discrete time systems	06
	TOTAL	36

Tex	Text/Reference Books					
1	K. Ogata, "Digital Control Engineering", Prentice Hall, Englewood Cliffs, 1995.					
2	M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.					
3	G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic					
	Systems", Addison-Wesley, 1998.					
4	B.C. Kuo, "Digital Control System", Holt, Rinehart and Winston, 1980.					

Scheme & Syllabus of 4th Year B. Tech. (EX) for students admitted in Session 2018-19 onwards.

7EX5-13: IMAGE PROCESSING AND PATTERN RECOGNITION

Credit: 3 Max. Marks: 150(IA:30, E		
	OT+OP End Term Exam: 3	
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Imaging in ultraviolet and visible band: Fundamental steps in image	7
	processing. Components inimage processing. Image perception in eye,	
	light and electromagnetic spectrum, Image sensing and acquisition us-	
	ing sensor array.	
3	Digital Image Fundamentals: Image sampling and quantization, Representing digital images, Spatial and gray-level resolution, Aliasing and Moire patterns, zooming and Shrinking digital images.	8
4	Image Restoration: Image restoration model, Noise Models, Spatial and	8
	frequency properties of noise, noise probability density functions.	
	Noise - only spatial filter, Mean filter Statistic filter and adaptive filter, Frequency domain filters - Band reject filter, Band pass filter and Notch	
	filter.	
5	Image Compression: Compression Fundamentals - Coding Redundancy,	8
5	Interpixel redundancy, Psycho visual redundancy and Fidelity criteria. Image	U
	Compression models, Source encoder and decoder.	
	Channel encoder and decoder, Lossy compression and compression	
	standards. Color space formats, scaling methodologies (like horizontal, vertical up/down scaling). Display format (VGA, NTSC, P AL).	
6	Expert System and Pattern Recognition: Use of computers in problem	8
	solving, information representation, searching, theorem proving, and pattern	
	matching with substitution.	
	Methods for knowledge representation, searching, spatial, temporal and	
	common sense reasoning, and logic and probabilistic inferencing. Appli- cations in expert systems and robotics.	
	TOTAL	
	IOINE	

Tex	Text/Reference Books				
1	Rafael C. Gonzalez: Digital Image Processing, Pearson Education, Asia. 2009				
2	Vipula Singh: Digital Image Processing, Elesvier. 2013				
3	Nick Effard: Digital Image Processing, Pearson Education, Asia. 2000				
4	Jain A. K.: Digital Image Processing, Prentice Hall of India 1989				
5	Shinghal: Pattern Recognition- Techniques and Applications, Oxford. 2006 Jaya-				
	raman: Digital Image Processing, TMH. 2011				

7EX4-21: DATA BASED MANAGEMENT SYSTEM LAB

Max. Marks: 100(IA: 60, ETE:40)

01.00	
0L+(DT+4P
SN	Contents
1	Designing database and constraints using DDL statements.
2	Experiments for practicing SQL query execution on designed database.
3	Database connectivity using JDBC/ODBC.
4	Features of embedded SQL.
5	Designing front end in HLL and accessing data from backend database.
6	Designing simple projects using front end-back end programming.
7	Project for generating Electricity Bills
8	Project for managing student's attendance/marks details.

Scheme & Syllabus of 4th Year B. Tech. (EX) for students admitted in Session 2018-19 onwards.

The second second

Credit: 2

Credit: 2

BIKANER TECHNICAL UNIVERSITY, BIKANER Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

7EE4-22: Advanced Control System Lab

Max. Marks: 100(IA:60, ETE:40)

0100	
0L+(OT+4P
SN	Contents
1	Determination of transfer functions of DC servomotor and AC servomotor.
2	Time domain response of rotary servo and Linear servo (first order and second order) systems using MATLAB/Simulink.
3	Simulate Speed and position control of DC Motor
4	Frequency response of small-motion, linearized model of industrial robot (first and second order) system using MATLAB.
5	Characteristics of PID controllers using MATLAB. Design and implementation of P, PI and PID Controllers for temperature and level control systems;
6	Design and implement closed loop control of DC Motor using MATLAB/Simulink and suitable hardware platform.
7	Implementation of digital controller using microcontroller;
8	Design and implementation of controller for practical systems - inverted pendu- lum system.
9	To design and implement control action for maintaining a pendulum in the upright position (even when subjected to external disturbances) through LQR technique in an Arduino Mega.
10	The fourth order, nonlinear and unstable real-time control system (Pendulum & Cart Control System)
11	Mini project on real life motion control system

8EX4-01: DIGITAL COMMUNICATION AND INFORMATION THEORY Credit: 3 Max. Marks: 150(IA: 30, ETE:120)

uicu		
3L+	0T+0P End Term Exam: 3	Hours
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	PCM & DELTA Modulation Systems: PCM and delta modulation, quanti-	08
	zation noise in PCM and delta modulation. Signal-to-noise ratio in PCM	
	and delta modulation,T1 Carrier System, Comparison of PCM and DM.	
	Adaptive delta Modulation. Bit, word and frame synchronization,	
	Matched filter detection.	
3	Digital Modulation Techniques: Various techniques of phase shift, am-	07
	plitude shift and frequency shift keying. Minimum shift keying. Modula-	
	tion & Demodulation.	
4	Error Probability in Digital Modulation: Calculation of error probabili-	08
	ties for PSK, ASK, FSK & MSK techniques.	
5	Information Theory: Amount of Information, Average Information, Entropy,	08
	Information rate, Increase in Average information per bit by coding, Shannon's	
	Theorem and Shannon's bound	
	Capacity of a Gaussian Channel, BW-S/N trade off, Orthogonal signal	
	transmission.	
6	Coding: Coding of Information, Hamming code, Single Parity-Bit Code,	08
	Linear Block code, cyclic code &convolution code.	
	TOTAL	40

Text/Reference Books		
1	Sklar: Digital Communication, Pearson Education. 2009	
2	R. N. Mutagi: Digital Communication, 2nd ed., Oxford. 2013	
3	P. Ramakrishna Rao: Communication Systems, MGH. 2013	
4	H. Taub & D.L. Schilling: Principles of Communication Systems, MGH. 2008	
5	Proakis: Digital Communication, MGH. 2008	
6	P. Chakrabarti: Principles of Digital Communications, Danpatrai & Sons. 1999	
7	K. Sam Shanmugam: Digital and Analog Communication System, John Wiley	
	Sons. 2006	
8	Lathi, B. P.: Modern Digital & Analog Communication System, Oxford Press. 2009	

Credit: 1

BIKANER TECHNICAL UNIVERSITY, BIKANER Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. (Electrical and Electronics Engineering)

8EX4-21: EMBEDDED SYSTEM LAB

Max. Marks: 50(IA: 30, ETE:20)

0L+0T+2P		
SN	Contents	
1	Introduction to Embedded Systems and their working.	
2	Data transfer instructions using different addressing modes and block transfer.	
3	Write a program for Arithmetic operations in binary and BCD-addition, subtrac-	
	tion, multiplication and division and display.	
4	Interfacing D/A converter & Write a program for generation of simple waveforms such as triangular, ramp, Square etc.	
5	Write a program to interfacing IR sensor to realize obstacle detector.	
6	Write a program to implement temperature measurement and displaying the	
	same on an LCD display.	
7	Write a program for interfacing GAS sensor and perform GAS leakage detection.	
8	Write a program to design the Traffic Light System and implement the same us-	
	ing suitable hardware.	
9	Write a program for interfacing finger print sensor.	
10	Write a program for Master Slave Communication between using suitable hard-	
	ware and using SPI	
11	Write a program for variable frequency square wave generation using with suita-	
	ble hardware.	
12	Write a program to implement a PWM based speed controller for 12 V/24V DC	
	Motor incorporating a suitable potentiometer to provide the set point.	