

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE

Artificial Intelligence & Machine Learning

V-VI Semester

Effective for the students admitted in year 2020-21 and onwards.

			<u> </u>	$\frac{-VS}{DRY}$)CIII		· L				
S.No	Category	Course			Contact hrs/week		Marks				Cr
•		Code	Title	L	T	P	Exam Hrs	IA	ЕТЕ	Total	
1	ESC	5AM3-01	Mathematics and Statistics	2	0	0	2	20	80	100	2
2		5AM4-02	Compiler Design	3	0	0	3	30	120	150	3
3		5AM4-03	Operating Systems	3	0	0	3	30	120	150	3
4		5AM4-04	Artificial Neural Networks	3	0	0	3	30	120	150	3
5		5AM4-05	Analysis of Algorithms	3	0	0	3	30	120	150	3
6	PCC/		Elective 1: (anyone)	2	0	0	2	20	80	100	2
	PEC/ PEC	5AM5-11	AI in Healthcare								
		5AM5-12	Human-Computer Interaction								
		5AM5-13	Information Security System								
			Sub Total	16	0	0		160	640	800	16
			PRACTICAL &	: SESSI	IONA	4L					
7		5AM4-21	Compiler Design Lab	0	0	2	2	30	20	50	1
8	PCC	5AM4-22	Neural Network Lab	0	0	2	2	30	20	50	1
9		5AM4-23	Analysis of Algorithms Lab	0	0	2	2	30	20	50	1
10	1	5AM4-24	Advance Java Lab	0	0	2	2	30	20	50	1
11	PSIT	5AM7-30	Industrial Training	0	0	1		75	50	125	2.5
12	Anandam	5AD8-00	ANANDAM						100	100	2
		Sub- Total		0	0	9		195	230	425	8.5
		TOTAL OF	V SEMESTER	16	0	9		355	870	1225	24.5

B. Tech. Artificial Intelligence and Machine Learning 3rd Year – V Semester

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

B.Tech. Artificial Intelligence and Machine Learning	5
3 rd Year – VI Semester	

			<u> </u>	r = VI							
SN	Category	Course			Contact hrs./week		Marks				Cr
		Code	Title	L	T	Р	Exam Hrs	IA	ЕТЕ	Tota 1	
1	ESC	6AM3-01	Digital Image Processing	2	0	0	2	20	80	100	2
2		6AM4-02	Natural Language Processing	3	0	0	3	30	120	150	3
3		6AM4-03	Soft Computing	3	0	0	3	30	120	150	3
4		6AM4-04	Cloud Computing	3	0	0	3	30	120	150	3
5		6AM4-05	Pattern Recognition	3	0	0	3	30	120	150	3
6	PCC/	Professional	Elective 1 (anyone)	3	0	0	3	30	120	150	3
	PEC	6AM5-11	Artificial Intelligence and Expert Systems								
		6AM5-12	Distributed System								
		6AM5-13	Data Mining and Business Intelligence								
		Sub-Total		17	0	0		170	680	850	17
			PRACTICAL &	SESSI	ONA	L	-	-			
7		6AM4-21	Digital Image Processing Lab	0	0	3	2	45	30	75	1.5
8	PCC	6AM4-22	Natural Language Processing Lab	0	0	3	2	45	30	75	1.5
9	1	6AM4-23	Soft Computing Lab	0	0	3	2	45	30	75	1.5
10		6AM4-24	Mobile Application Development Lab	0	0	3	2	45	30	75	1.5
11	Anandam	6AD8-00	ANANDAM						100	100	2
		Sub- Total		0	0	12		180	220	400	8
	1		VI SEMESTER	17	0	12		350	900	1250	25

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE

Artificial Intelligence & Machine Learning

V-VI Semester

Effective for the students admitted in year 2020-21 and onwards.

5AM3-01: Mathematics and Statistics

	Credit: 2	Max Marks: 100 (IA :20, ETE	:80)
	2L+ 0T+ 0P	End Term Exams: 2hr	
S.No.	S.No. Contents		Hours
1	Introduction: Objective, scope, and outcome	of the course	01
2	Introduction: Engineering application of opti the optimization problem, single variable ar without constraints.		05
3	Project Scheduling: Project Scheduling by P. Sequencing Theory: General Sequencing promachines and 2-jobs through m machines.	· · ·	06
4	Transportation problem: Introduction, balanced and unbalanced transportation, northwest corner rule, lowest cost entry method, and Vogel's approximation, optimality test, degeneracy in transportation problem. Assignment problem: Introduction, Hungarian method.		
5	Applied Statistics: Introduction to statistics a variance and standard deviation. Testing of hypothesis – Introduction-Types of testing hypothesis-Large sample tests- Z test Proportion, mean and difference of means.	f errors, critical region, the procedure of	06
6	Small sample tests- Students t-test, F-test- independence of attributes- Design of Experin two-way classifications - CRD-RBD- LSD.		06
	Total		30

- Fundamentals of Mathematical statistics- by S. C. Gupta and V. K. Kapoor; S. Chand & sons
- Advanced Engg. Mathematics by Erwin Kreyszig John; willey & sons
- Advanced Engg. Mathematics by R. K. Jain & S. R. K Iyenger; Narosa publishing House.
- Higher Engg. Mahematics by Dr. B. S. Grewal- Khanna publications

5AM4-02: Compiler Design

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.	S.No. Contents		Hours
1	Introduction: Objective, scope, and outco	ome of the course.	01
2	Interpreter definition, Phase of the comp	outcome of the course. Compiler, Translator, piler, Bootstrapping, Review of Finite automata tokens, Idea about LEX: A lexical analyzer	06
3	grammars & passers error handling of I parsers, bottom-up parsing, Shift reduce p LR & LALR parsing tables, parsing v	rs: Introduction to parsing. Top-down parsing, LL LL parser, Recursive descent parsing predictive parsing, LR parsers, Construction of SLR, Conical with ambiguous grammar. Operator precedence generator: YACC error handling in LR parsers.	10
4	attributed definitions, Top-down transl	on of syntax trees, S- Attributed Definition, L- lation. Intermediate code forms using postfix for various control structures, Representing TAC ression, and control structures.	10
5		n, Strategies, Activation records, accessing local red language, Parameter passing, Symbol table bol tables.	08
6	Definition of basic block control flow Advantages of DAG, Sources of optimiz	v graphs ; DAG representation of basic block, ation, Loop optimization, Idea about global data n, Peephole optimization, Issues in the design of	07
		Total	42

Suggested Books

• A.V. Aho, J. D. Ullman, Monica S. Lam and R. Sethi, Compilers Principles, Techniques and Tools (2 ed.), Pearson Education, 2005. ISBN 978-0321547989.

Reference Books

- John Levine, Tony Mason and Doug Brown, Lex and Yacc (1 ed.), O'Reilly Media, 1992. ISBN 978-1565920002.
- Kenneth C. Louden, Compiler Construction Principles and Practice (1 ed.), Course Technology Inc, 1997. ISBN 978-0534939724.
- Dhamdhere, Compiler Construction (2 ed.), Macmillan Publication, 2003. ISBN 978-0333904060

5AM4-03: Operating Systems

	Credit: 3 Max Marks: 150 (IA :30, ETE:1 3L+0T+0P End Term Exams: 3hr		
S.No.	No. Contents		Hours
1	Introduction: Objective, scope and outcome	e of the course.	01
2	Introduction and History of Operating processes and files Processor management: exclusion, semaphores, wait and signal algorithms, critical sections, threads, multith	: inter-process communication, mutual procedures, process scheduling, and	08
3	Memory management: contiguous memor page table structure, demand paging, p segmentation, case study		08
4	Deadlock: Shared resources , resource allo models, deadlock detection, deadlock avoida Device management: devices and their of handling, disk scheduling algorithms, and po	ance, deadlock prevention algorithms characteristics, device drivers, device	10
5	File management: file concept, types and studies, access methods and matrices, file se		07
6	UNIX and Linux operating systems as cas Mobile OS	se studies; Time OS and case studies of	06
	Total		40

- Silberschatz, P. B. Galvin and G. Gagne, Operating System Concepts (9 ed.), John Wiley, 2012. ISBN 978-1118063330.
- Tanenbaum, Modern Operating Systems (3 ed.), Prentice Hall India Learning Private Limited, 2019. ISBN 978-8120339040.
- W. Stallings, Operating Systems Internals and Design Principles (7 ed.), Prentice-Hall, 2013. ISBN 978-9332518803
- Operating Systems William Stallings, Pearson Education Asia (2002)
- Operating Systems Nutt, Pearson Education Asia (2003)

5AM4-04: Artificial Neural Networks

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.		Contents	Hours
1	Introduction: Objective, scope, and outco	ome of the course.	01
2	artificial neurons. Model of an ANN. Ac classes of network architectures. superv	n and ANN Structure, Biological neurons and ctivation functions are used in ANNs. Typical vised and unsupervised learning rules, Neural ion, Recognition of Olympic games symbols, nition of handwritten characters	07
3	algebra, State-space concepts, Concept	ng mechanisms: Re-visiting vector and matrix as of optimization, Error-correction learning. ng. Competitive learning. Delta learning rule,	08
4		d learning of perceptron, Pattern classifier, erceptron as a pattern classifier, Perceptron	07
5	Feedforward neural network : Feedforward networks. Backpropagation algorithm, I	ard ANN, Structures of Multi-layer feedforward Backpropagation - training and convergence, ropagation. Practical and design issues of	08
6	SOM Algorithm, Properties of Feature 2 Quantization, Adaptive Pattern Classifica	eature Mapping Models, Self-Organization Map, Map, Computer Simulations, Learning Vector ation Korhonen algorithm, Hopfield Networks: onance theory: Network and learning rules.	07
		Total	38

- Neural Networks a Comprehensive Foundations, Simon Haykin, PHI edition.
- B. Yegnanarayana Artificial neural network PHI Publication
- Satish Kumar, "Neural Networks: A classroom approach", Tata McGraw Hill, 2004.
- Robert J. Schalkoff, "Artificial Neural Networks", McGraw-Hill International Editions, 1997.
- Neural Networks in Computer Intelligence, Li-Min Fu MC GRAW HILL EDUCATION 2003
- Kevin L. Priddy, Paul E. Keller Artificial neural networks: An Introduction SPIE Press, 2005

5AM4-05: Analysis of Algorithms

Credit: 3		Max Marks: 150 (IA :30, ETE:120)	
	3L+0T+0P	End Term Exams: 3hr	
S.No.	.No. Contents		Hours
1	Introduction: Objective, scope, and out	come of the course.	01
2		Complexity Order Notations: definitions and Conquer Method: Binary Search, Merge Sort, lication algorithms.	06
3	and Minimal Spanning Trees.	Job Sequencing, Optimal Merge Patterns, Chain Multiplication. Longest Common n.	09
4	Backtracking Algorithms and queens' pr	ve and Rabin Karp string matching algorithms,	08
5	Problem. Randomized Algorithms- Las randomized algorithm for Min-Cut, r	of Assignment and Quadratic Assignment vegas algorithms, Monte Carlo algorithms, a randomized algorithm for 2- SAT. Problem low shop scheduling, and Network capacity	08
6	Problem Classes Np, Np-Hard, And N NP-Complete Problems. Decision Probl	Np-Complete: Definitions of P, NP-Hard and lems. Cook's Theorem. Proving NP-Complete nd Vertex Cover Problem. Approximation over Problem.	08

- T.H. Cormen, C.E. Leiserson, R.L. Rivest "Introduction to Algorithms", PHI.
- Sedgewich, Algorithms in C, Galgotia
- Berman. Paul, "Algorithms, Cengage Learning".
- Richard Neopolitan, Kumar SS Naimipour, "Foundations of Algorithms"
- Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006
- E. Horowitz, S. Sahni, and S. Rajsekaran, "Fundamentals of Computer Algorithms," Galotia Publication

5AM5-11: AI in Healthcare

	Credit: 2	Max Marks: 100 (IA :20, ETE:80)		
	2L+ 0T+ 0P	End Term Exams: 2hr		
S.No.	Cor	ntents	Hours	
1	Introduction: Objective, scope, and out	come of the course.	01	
2	Course Overview, : Introduction to Module, Operationalizing Consumerism Using AI, Operationalizing a New Supply Chain, Machine Learning, Artificial Intelligence, and Decision Support.		07	
3	Journey Mapping and Pain Points, Patient Monitoring, Differential Diagnosis, Care Management, Preventive Screening, Avoidable Readmissions, Disease Burden as a Predictor of Cost, Data Sourcing, Data Enrichment.			
4	Provider Taxonomies and Relationships, Predictive Modeling Process, Analytic Maturity Model, Identifying Historic Addressable Opportunity, Predicting Addressable Opportunity, Measuring Predictive Accuracy, Making Recommendations			
5		re, A review of the pending research and review of important AI data mining icine,	05	
6	6 A description of BDA and its application to health care, The use of technology underneath, Summary of important issues of AI in health care. Physician point of view and case studies on Radiology and Physiological Tests			
	Тс	otal	30	

Suggested Books

• Prashant Natarajan, John C. Frenzel, and Detlev H. Smaltz Demystifying Big Data and Machine Learning for Healthcare (1 ed.), CRC Press, 2017. ISBN 978-

- Arjun Panesar, Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes (1 ed.), Apress, 2019. ISBN 978-1484237984.
- Raghupathi W, Raghupathi V., Big data analytics in healthcare: promise and potential, Health info science and syst., 2014.
- Chen Y, Argentinis E, et al., Clinical therapeutics, IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. 2016.

^{• 1138032637.}

5AM5-12: Human-Computer Interaction

	Credit: 2	Max Marks: 100 (IA :20, ETE:80)		
	2L+ 0T+ 0P	End Term Exams: 2hr		
S.No.		Contents	Hours	
1	Introduction: Objective, scope and outco	ome of the course.	01	
2	Historical evolution of the field, Interactiv	ve system design, Concept of usability -definition		
	and elaboration, HCI and software Engin	eering, GUI design and Aesthetics, Prototyping	02	
	techniques.			
2	Model-based Design and evaluation:	Basic idea, introduction to different types of		
	models, GOMS family of models (KLM and CMN- GOMS), Fitts' law and Hick-Hyman's			
	law, Model-based design case studies.			
3 Guidelines in HCI: Schneiderman's eight, golden rules, Norman's seven principles,				
	Norman's model of interaction, Nielsen's	ten heuristics with examples of its use Heuristic	05	
	evaluation, Contextual inquiry, Cognitive	walkthrough.		
4	Empirical research methods in HCI: In	troduction (motivation, issues, research question		
	formulation techniques), Experiment desig	gn, and data analysis (with an explanation of one-	06	
	way ANOVA).			
5	Task modeling and analysis: Hierarchic	cal task analysis (HTA), Engineering task models		
	and Concur Task Tree (CTT), Introduction	n to formalism in dialog design, design using FSM	07	
	(finite state machines) Statecharts and (cla	assical) Petri Nets in dialog design.		
6	• •	ance of CA in IS design Model Human Processor	05	
	(MHP), OOP- Introduction OOM- Object	-Oriented Modeling of User Interface Design.	03	
		Total	30	

- Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, —Human-Computer Interaction, 3rd Edition, Pearson Education, 2004Brian Fling, —Mobile Design and Development, First Edition, O'Reilly Media Inc., 2009)
- Bill Scott and Theresa Neil, -Designing Web Interfaces, First Edition, O'Reilly, 2009. (

5AM5-13: Information Security System

	Credit: 2	Max Marks: 100 (IA :20, ETE:80)
	2L+ 0T+ 0P	End Term Exams: 2hr	
S.No.	S.No. Contents		Hours
1	Introduction: Objective, scope, and outco	me of the course.	01
2	-	ices and mechanism, classical encryption position ciphers, cryptanalysis, stream and	05
3	an example, the strength of DES, Design pr its transformation functions, key expansion	cture, Data Encryption Standard (DES) with inciples of block cipher, AES with structure, on, example, and implementation. Multiple ode Book, Cipher Block Chaining Mode, mode, Counter mode.	06
4.		ions: Requirements and Cryptanalysis, RSA l cryptosystem, Elliptic curve cryptosystem.	05
5	requirements and security, Hash function Hash Algorithm (SHA). Message Authenti MACs based on Hash Functions, Macs ba	applications: Simple hash functions, its s based on Cipher Block Chaining, Secure cation Codes, its requirements and security, sed on Block Ciphers. Digital Signature, its ous digital signature schemes (Elgamal and h.	07
6	Key management and distribution: symplex asymmetric encryptions, distribution of print infrastructure. Remote user authentication	metric key distribution using symmetric and public keys, X.509 certificates, public key with symmetric and asymmetric encryption, proaches, SSL architecture and protocol,	06
	To	tal	30

- Security in Computing, Fourth Edition, by Charles P. Pfleeger, Pearson Education
- Cryptography And Network Security Principles And Practice, Fourth or Fifth Edition, William Stallings, Pearson
- Modern Cryptography: Theory and Practice, by Wenbo Mao, Prentice Hall.
- Network Security Essentials: Applications and Standards, by William Stallings. Prentice Hall.

5AM4-21: Compiler Design Lab

	Credit: 1	Max Marks: 50 (IA :30, ETE:20)		
	0L+ 0T+ 2P	End Term Exams: 2hr		
S.No.	List of Experiments			
1	Introduction: Objective, scope and outcome	of the course.		
2	To identify whether a given string is a keyw	ord or not.		
3	Count total no. of keywords in a file. [Takin	g file from user]		
4	Count total no of operators in a file. [Taking	[file from user]		
5	Count the total occurrence of each character	in a given file. [Taking file from user]		
6	Write a C program to insert, delete and disp	lay the entries in the Symbol Table.		
7	 Write a LEX program to identify following: 1. Valid mobile number 2. Valid url 3. Valid identifier 4. Valid date (dd/mm/yyyy) 5. Valid time (hh:mm:ss) 			
8	Write a lex program to count blank spaces, w	vords,lines in a given file.		
9	Write a lex program to count the no. of vow	els and consonants in a C file.		
10	Write a YACC program to recognize strings	aaab,abbb using a^nb^n, where $b \ge 0$.		
11	Write a YACC program to evaluate an arith	metic expression involving operators +,-,* and /.		
12	Write a YACC program to check validity of a^nb^nc^md^m, where n, m>0	a strings abcd, aabbcd using grammar		
13	Write a C program to find first of any gram	nar.		

5AM4-22: Neural Networks Lab

Credit: 1 Max Marks: 50 (IA :30, ETE:20)		
	0L+ 0T+ 2P	End Term Exams: 2hr
S.No.	Lis	t of Experiments
1	Write a program to implement Percept	ron
2	Write a program to implement Multila	yered feedforward neural Network
3	Implement Binary Classification Using	g neural network
4	To study Convolutional Neural Netwo	rk and Recurrent Neural Network
5	Implement Multi-Class Classification using Neural network	
6	Implement Binary Classification Using CNN	
7	Implement Multi-Class Classification Using CNN	
8	Implement traveling salesperson problem (tsp) using Self Organizing maps	
9	Write a program to implement Classification using Back-Propagation	
10	To study and implement the Weighted	machine problem

5AM4-23: Analysis of Algorithms Lab

S.No.	0L+ 0T+ 2P List o	End Term Exams: 2hr	
	List o		
1		List of Experiments	
	Sort a given set of elements using the Qui	cksort method and determine the time required to sort	
	the elements. Repeat the experiment for a	different values of n, the number of elements in the list to	
	be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.		
2	· · · · ·	orithm to sort a given set of elements and determine the at the experiment for different values of n, the number of	
	elements in the list to be sorted and plo read from a file or can be generated using	ot a graph of the time taken versus n. The elements can be the random number generator.	
3	a. Obtain the Topological ordering of ve	rtices in a given digraph. b. Compute the transitive	
	closure of a given directed graph using Warshall's algorithm.		
4	Implement 0/1 Knapsack problem using Dynamic Programming.		
5	From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.		
6	Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.		
	a. Print all the nodes reachable from a given starting node in a digraph using the BFS method.		
7	b. Check whether a given graph is connected or not using the DFS method.		
8.	Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.		
9.	Implement All-Pairs Shortest Paths Proble	em using Floyd's algorithm.	
10	Implement N Queen's problem using Back	xtracking.	

5AM4-24: Advance Java Lab

Credit: 1 Max Marks: 50 (IA :30, ETE:20)		Max Marks: 50 (IA :30, ETE:20)	
	0L+ 0T+ 2P	End Term Exams: 2hr	
S.No.	Lis	t of Experiments	
1	C	re, Applets, Applications and Pluggable Look and Feel, ttons, Toggle Buttons, Checkboxes, and Radio Buttons	
2	Java database Programming, java.sql Pack Package, Client and Server Programs, Co	cage, JDBC driver, Network Programming With java.net ntent And Protocol Handlers	
3	RMI architecture, RMI registry, writing distributed application with RMI, Naming services, Naming And Directory Services, Overview of JNDI, Object serialization and Internationalization		
4	J2EE architecture, Enterprise application concepts, n-tier application concepts, J2EE platform, HTTP protocol, web application, Web containers and Application servers		
5	Server side programming with Java Servlet, HTTP and Servlet, Servlet API, life cycle, configuration and context, Request and Response objects, Session handling and event handling, Introduction to filters with writing simple filter application		
6	Introduction to filters with writing simple filter application JSP architecture, JSP page life cycle, JSP elements, Expression Language, Tag Extensions, Tag Extension API, Tag handlers, JSP Fragments, Tag Files, JSTL, Core Tag library, overview of XML Tag library, SQL Tag library and Functions Tag library		

Credit: 2 Max Marks: 100 (IA :20, ETE:80) 2L+ 0T+ 0P End Term Exams: 2hr S.No. Contents Hours 1 Introduction: Objective, scope, and outcome of the course. 01 2 Introduction to Image Processing: Digital Image representation, Sampling & Quantization, Steps in image Processing, Image acquisition, color image 04 representation. Image Transformation & Filtering: Intensity transform functions, histogram 3 processing, Spatial filtering, Fourier transforms and its properties, frequency 06 domain filters, color models, Pseudo coloring, color transforms, Basics of Wavelet Transforms. 4 Image Restoration: Image degradation and restoration process, Noise Models, Noise Filters, degradation function, Inverse Filtering, Homomorphism Filtering. 07 5 Image Compression: Coding redundancy, Interpixel redundancy, Psychovisual redundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques, 05 JPEG Compression. 6 Image Segmentation & Representation: Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region-Based 05 Segmentation, Boundary representation, Boundary Descriptors. Total 28

6AM3-01: Digital Image Processing

- Rafael C Gonzalez, Richard E Woods, "Digital Image Processing", 4th Edition, Pearson, 2018.
- Kenneth R. Castleman, Digital Image Processing Pearson, 2006.
- Anil K.Jain, "Fundamentals of Digital Image Processing", Person Education, 2003.

	Credit: 3 Max Marks: 150 (IA :30, ETE:1		
	3L+ 0T+ 0P End Term Exams: 3hr		
S.No.	. Con	itents	Hours
1	Introduction: Objective, scope and outcome	e of the course.	01
2	Introduction to NLP: Regular Expressions Minimum Edit distance, N gram Language M		06
3	Syntactic Analysis: English Word Classes, The Penn Treebank Part-of-Speech Tagset, Part-of-Speech Tagging, HMM Part-of-Speech Tagging, Maximum Entropy Markov Models, Grammar Rules for English, Treebanks, Grammar Equivalence and Normal form, Lexicalized Grammar.		08
4	Semantic Analysis: Representation of Sentence Meaning: Computational Desiderata for Representations, Model Theoretic Semantics, First-Order Logic Event and State Representations, Description Logics, Semantic roles, Semantic Role labeling.1		10
5	Sequence parsing with recurrent networks:Simple Recurrent Networks, Applications of RNNs and Deep Networks:Stacked and Bidirectional RNNs, Managing Context in RNNs:0909		09
6	Case Study: Sentiment Classification, Dialo	g Systems, and Chatbots.	06
Total		1	40

6AM4-02: Natural Language Processing

- Natural Language understanding by James Allen, Pearson Education 2008
- NLP: A Paninian Perspective by Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal, Prentice Hall 1995
- Meaning and Grammar by G. Chirchia and S. McConnell Ginet, MIT Press 2000
- An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition by Daniel Jurafsky and James H. Martin, Pearson Education 2008
- Natural language processing in Prolog by Gazdar, & Mellish, Addison-Wesley 1989

6AM4-03: Soft Computing

	Credit: 3	Max Marks: 150 (IA :30, ETE:12	0)
	3L+ 0T+ 0P End Term Exams: 3hr		
S.No	Сог	ntents	Hours
1	Introduction: Objective, scope, and out	come of the course.	01
2	- 0	eural Networks: Brief Review of Neural Soft Computing Constituents, From igence: Machine Learning Basics	06
3		Fuzzy Sets, Fuzzy Relations, Membership asoning, Fuzzy Inference Systems, Fuzzy Applications of Fuzzy Set,	07
4	GENETIC ALGORITHMS: Main Operators- Genetic Algorithm Based Optimization-Principle of Genetic Algorithm- Genetic Algorithm with Directed Mutation- Comparison of Conventional and Genetic Search Algorithms Issues of GA in practical implementation. Introduction to Particle swarm optimization-PSO operators-GA and PSO in engineering applications. Machine Learning Approach to Knowledge Acquisition.		09
5	New trends in Evolutionary Algorithms: Ant Colony Optimization: Ant system, MM-AS, Ant Miner, Snake-Ant Algorithm. Artificial Bee Colony, Cuckoo Search Algorithm. Co-evolution, Plasticity and lifetime learning, Lamarckian learning, the "No free lunch" theorem.		06
6	-	atlab/Python, Arrays and array operations, etwork toolbox and fuzzy logic toolbox, ral Network and Fuzzy Logic	09
	Te	otal	38

- Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, S. Rajasekaran, G. A. Vijayalakshami, PHI.
- Genetic Algorithms: Search and Optimization, E. Goldberg.
- L.Fausett, Fundamentals of Neural Networks, Prentice Hall
- T.Ross, Fuzzy Logic with Engineering Applications, Tata McGraw Hill

6AM4-04: Cloud Computing

Credit: 3 Max Marks: 150 (IA :30, ETE:120)			
	3L+ 0T+ 0P End Term Exams: 3hr		
S.No.		Contents	Hours
1	Introduction: Objective, scope and outcom	e of the course.	01
2	Introduction: Objective, scope and outcom	ne of the course. Introduction Cloud Computing: Nutshell	
	of cloud computing, Enabling Technology, H	Historical development, Vision, feature Characteristics and	06
	components of Cloud Computing. Challenge	es, Risks and Approaches of Migration into Cloud. Ethical	00
	Issue in Cloud Computing, Evaluating the Cl	oud's Business Impact and economics, Future of the cloud.	
	Networking Support for Cloud Computing.	Ubiquitous Cloud and the Internet of Things	
3	Cloud Computing Architecture: Cloud H	Reference Model, Layer and Types of Clouds, Services	
	models, Data centre Design and interconr	nection Network, Architectural design of Compute and	10
	Storage Clouds. Cloud Programming and S	Software: Fractures of cloud programming, Parallel and	
distributed programming paradigms-Map Reduce, Hadoop, High-level Language for		Reduce, Hadoop, High-level Language for Cloud.	
	Programming of Google App Engine.		
4	Virtualization Technology: Definition	, Understanding and Benefits of Virtualization.	
	Implementation Level of Virtualization, Vin	rtualization Structure/Tools and Mechanisms, Hypervisor	09
	VMware, KVM, Xen. Virtualization: of CP	PU, Memory, I/O Devices, Virtual Cluster and Resources	07
	Management, Virtualization of Server, Desk	stop, Network, and Virtualization of data-Centre.	
5	Securing the Cloud: Cloud Information	security fundamentals, Cloud security services, Design	
	principles, Policy Implementation, Cloud Co	omputing Security Challenges, Cloud Computing Security	
	Architecture. Legal issues in Cloud Comp	uting. Data Security in Cloud: Business Continuity and	07
	Disaster Recovery, Risk Mitigation, Under	standing and Identification of Threats in Cloud, SLA-	07
	Service Level Agreements, Trust Manageme	ent	
6	Cloud Platforms in Industry: Amazon we	eb services, Google AppEngine, Microsoft Azure Design,	
	Aneka: Cloud Application Platform -Integr	ration of Private and Public Clouds Cloud applications:	~
	Protein structure prediction, Data Analysis,	Satellite Image Processing, CRM	07
	Total		40

- Dan C Marinescu, Cloud Computing, Theory and Practice, MK Elsevier
- Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms, Wiley
- Barrie Sosinsky, Cloud Computing Bible, Wiley
- Jim Smith, Ravi Nair, Virtual Machines: Versatile Platforms for Systems and Processes, MK Elsevier

6AM4-05: Pattern Recognition

Credit: 3		Max Marks: 150 (IA :30, ETE:1	.20)
	3L+ 0T+ 0P End Term Exams: 3hr		
S.No.	Cont	ents	Hours
1	Introduction: Objective, scope, and outco	me of the course.	01
2	BASICS OF PROBABILITY, RANDOM PROCESSES AND LINEAR ALGEBRA Probability: independence of events, Conditional and joint probability, Bayes' theorem; Random Processes: Stationary and nonstationary processes, Expectation, Autocorrelation, Cross-Correlation, Spectra, Linear Algebra: Inner product, outer product, Inverses, Eigenvalues, Eigen vectors, Bayes Decision theory		09
3	BAYES DECISION THEORY Minimum-error-rate classification, Classifiers, Discriminate functions, Decision surfaces, Normal density and discriminant functions, Discrete features 08		08
4	PARAMETER ESTIMATION METHODS Maximum-Likelihood estimation,07Gaussian case, Maximum a Posteriori estimation, Bayesian estimation, Gaussian case		07
5	UNSUPERVISED LEARNING AND CLUSTERING Criterion functions for clustering, Algorithms for clustering, K-Means, Hierarchical and other methods, Cluster validation, Gaussian mixture models, Expectation-Maximization method for parameter estimation, Maximum entropy estimation07		07
6	SEQUENTIAL PATTERN RECOGNITION: Hidden Markov Models (HMMs), Discrete HMMs, Continuous HMMs, NONPARAMETRIC TECHNIQUES FOR DENSITY ESTIMATION: Parzen-window method, K-Nearest Neighbor method, LINEAR DISCRIMINANT FUNCTIONS Gradient descent procedures, Perceptron, Support vector machines		08
	Total		40

- Pattern Classification, Richard O. Duda, Peter E. Hart, David G. Stork John Wiley 2001
- Pattern Recognition, Konstantinos Koutroumbas and Sergios Theodoridis 4th Edition., Academic Press 2009
- Pattern Recognition and Machine Learning, Bishop, Christopher, Springer 2006

6AM5-11: Artificial Intelligence and Expert Systems

	Credit: 3	Max Marks: 150 (IA :30, ETE:12	20)
3L+ 0T+ 0P		End Term Exams: 3hr	
S.No.	Con	tents	Hours
1	Introduction Overview of Artificial Intelligence, History, space representations Depth-first, breadth-f game playing, Genetic algorithms.		08
2	Knowledge Representation and Issues Notational systems, Trees, graphs, hierard frames, semantic networks, constraints, con discovery in databases (KDD).	chies, propositional and predicate logics, ceptual dependencies, database, knowledge	08
3	Logical Reasoning and Probabilistic Reas Predicate Calculus resolution, complete	eness, and strategies Unification, Prolog, g, Probabilistic inference networks Fuzzy	08
4	Learning Knowledge acquisition, classification rules, Neural Networks Principles, biological analogies Training (te	self-directed systems.	08
5	Expert Systems Definition – Features of an expert system – Organization – Characteristics – Prospector – Knowledge Representation in expert systems – Expert system tools – MYCIN – EMYCIN		08
	То		40

- Stuart Russel and Peter Norvig, 'Artificial Intelligence A Modern Approach', Second Edition, Pearson Education, 2003 / PHI.
- Bratko, I., Prolog, 2nd Ed., Addison-Wesley, 1990.
- George F.Luger, 'Artificial Intelligence Structures and Strategies for Complex Problem Solving', Fourth Edition, Pearson Education, 2002.
- Giarratano, J., and Riley G., Expert Systems Principles and Programming, PWS-KENT, 1989.

6AM5-12: Distributed System

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
3L+ 0T+ 0P End Term Exams: 3hr			
S.No.	Contents		Hours
1	Introduction: Objective, scope and outcom	ne of the course.	01
2	Distributed Systems: Features of distributed systems, nodes of a distributed system, Distributed computation paradigms, Model of distributed systems, Types of Operating systems: Centralized Operating System, Network Operating Systems, Distributed Operating Systems & Cooperative Autonomous Systems, design issues in distributed operating systems. Systems Concepts and Architectures: Goals, Transparency, Services, Architecture Models, Distributed Computing Environment (DCE). Theoretical issues in distributed systems: Notions of time and state, states & events in a distributed system, time, clocks & event precedence, recording the state of distributed systems.		08
3	Concurrent Processes and Programming: Processes and Threads, Graph Models for Process Representation, Client/Server Model, Time Services, Language Mechanisms for Synchronization, Object Model Resource Servers, Characteristics of Concurrent Programming Languages (Language not included).Inter-process Communication and Coordination: Message Passing, Request/Reply and Transaction Communication, Name and Directory services, RPC, and RMI case studies.08		
4	Distributed Process Scheduling: A System Performance Model, Static Process Scheduling with Communication, Dynamic Load Sharing and Balancing, Distributed Process Implementation. Distributed File Systems: Transparencies and Characteristics of DFS, DFS Design and implementation, Transaction Service and Concurrency Control, Data and File Replication. Case studies: Sun network file systems, General Parallel file System and Window's file systems.08Andrew and Coda File SystemsOncurrenceOncurrenceOncurrence		08
5	Distributed Shared Memory: Non-Uniform Memory Access Architectures, Memory Consistency Models, Multiprocessor Cache Systems, Distributed Shared Memory, Implementation of DSM systems. Models of Distributed Computation: Preliminaries, Causality, Distributed Snapshots, modelling a Distributed Computation, Failures in a Distributed System, Distributed Mutual Exclusion, Election, Distributed Deadlock handling, Distributed termination detection. 08		08
6	Distributed Agreement : Concept of Faul Byzantine Agreement, Impossibility of Replicated Data Management: concepts an	ts, failure and recovery, Byzantine Faults, Adversaries, Consensus and Randomized Distributed Agreement. nd issues, Database Techniques, Atomic Multicast, and r: Introduction, Architecture, CORBA RMI, CORBA	08
		Total	41

- Andrew S. Tannenbaum and Maarten Van Steen, Distributed Systems: Principles and Paradigms, Pearson
- George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair, Distributed Systems: Concepts and Design, Addison Wesley
- P. K. Sinha, Distributed Operating Systems: Concepts and Design, IEEE press
- M. Singhal and N. G. Shivaratri, Advanced Concepts in Operating Systems,, McGraw-Hill

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

6AM5-13: Data Mining & Business Intelligence

	Credit: 3	Max Marks: 150 (IA :30, ETE:12	20)
3L+ 0T+ 0P End Term Exams: 3hr			
S.No.	No. Contents		Hours
1	Introduction: Objective, scope, and outco	ome of the course.	01
2	Introduction - Evolution and importance of Data Mining-Types of Data and Patterns mined Technologies-Applications-Major issues in Data Mining. Knowing about Data- Data Preprocessing: Cleaning– Integration–Reduction–Data transformation and Discretization.		08
3			09
4	Classification and Prediction: Issues	s - Decision Tree Induction - Bayesian ation – k-Nearest mining Classification. s.	07
5	Clustering: Overview of Clustering – Types of Data in Cluster Analysis – Major Clustering Methods.		07
6	integration Introduction to Business Metr balanced scorecard. Tool for BI: Microsof	l concepts- BI Framework-Basics of Data ics and KPI - Concept of the dashboard and ft SQL server: Introduction to Data Analysis Analysis using SSIS tools- Introduction to tta Mining Implementation Methods.	08
	To	tal	40

- Han, M. Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann
- M. Kantardzic, "Data mining: Concepts, models, methods and algorithms, John Wiley & Sons Inc
- Paulraj Ponnian, "Data Warehousing Fundamentals", John Willey.
- M. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education.
- G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner", Wiley India

6AM4-21: Digital Image Processing Lab

Credit: 1.5 Max Marks: 75 (IA :45, ETE:		
	0L+ 0T+ 3P	End Term Exams: 2hr
S.No.	List o	f Experiments
1	Point-to-point transformation. This laboratory experiment provides for thresholding an image and the evaluation of its histogram. Histogram equalization. This experiment illustrates the relationship among the intensities (gray levels) of an image and its histogram.	
2	Geometric transformations. This experiment shows image rotation, scaling, and translation. Two-dimensional Fourier transform	
3	Linear filtering using convolution. Highly selective filters.	
4	Ideal filters in the frequency domain. Non Linear filtering using convolutional masks. Edge detection. This experiment enables students to understand the concept of edge detectors and their operation in noisy images.	
5	Morphological operations: This experiment is intended so students can appreciate the effect of morphological operations using a small structuring element on simple binary images. The operations that can be performed are erosion, dilation, opening, closing, open-close, close-open.	

6AM4-22: Natural Language Processing Lab

	Credit: 1.5 Max Marks: 75 (IA :45, ETE:30)		
	0L+ 0T+ 3P End Term Exams: 2hr		
S.No.	List	of Experiments	
1	Convert the text into tokens		
2	Find the word frequency		
3	Demonstrate a bigram language model		
4	Demonstrate a trigram language model		
5	Generate regular expressions for a given	text.	
6	Perform Lemmatization		
7	Perform Stemming		
8	Identify parts-of Speech using Penn Treebank tag set.		
9	Implement RNN for sequence labeling		
10	Build a Chunker		
11	Find the synonym of a word using Word	Net	
12	Implement semantic role labeling to iden	ntify named entities	
13	Translate the text using First-order logic		
14	Implement RNN for sequence labeling		
15	Implement POS tagging using LSTM		
16	Implement Named Entity Recognizer		
17	Word sense disambiguation by LSTM/G	RU	

6AIMIL4-23: Soft Computing Lab

	Credit: 1.5	Max Marks: 75 (IA :45, ETE:30)	
0L+ 0T+ 3P		End Term Exams: 2hr	
S.No.	List of Experiments		
1	Create a perceptron with an appropriate number of inputs and outputs. Train it using a fixed increment learning algorithm until no change in weights is required. Output the final weights		
2	Training a feed forward Neural network.		
3	Train Feed Forward neural Network with Back propagation		
4	Building a Linear Regression Neural network		
5	Implementation of Radial basis function network		
6	Implementing crisp partitions for real-life Iris dataset		
7	Implement Union, Intersection, Complement and Difference operations on fuzzy sets.		
8	Create Fuzzy relation by Cartesian product of any two fuzzy sets and perform max-min composition on two fuzzy relations		
9	Write a program to implement Hebb's rule and Delta rule		
10	Implementing SVM (Support Vector Machine) classification by fuzzy concepts.		
11	Implementation of Self-Organizing Map		
12	Implementation of back propagation algorithm for solving face recognition problem		
13	Implementation of Ant Colony Optimization on real life dataset		
14	Implementation of Neuro-Fuzzy-GA methods on real life dataset.		
Suggested Books			

ouggestea Books

- R. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic, and Genetic Algorithms: Synthesis and Applications, Prentice Hall of India
- L. Fausett, Fundamentals of Neural Networks, Prentice Hall

Experiments can be implemented on Matlab

6AM4-24: Mobile Application Development Lab

	Credit: 1.5	Max Marks: 75 (IA :45, ETE:30)	
	0L+ 0T+ 3P	End Term Exams: 2hr	
S.No.	List of Experiments		
1	To study Android Studio and android studio installation. Create "Hello World" application.		
2	To understand Activity, Intent, Create sample application with login module. (Check username and password).		
3	Design simple GUI application with activity and intents e.g. calculator.		
4	Develop an application that makes use of RSS Feed.		
5	Write an application that draws basic graphical primitives on the screen		
6	Create an android app for database creation using SQLite Database.		
7	Develop a native application that uses GPS location information		
8	Implement an application that writes data to the SD card.		
9	Design a gaming application		
10	Create an application to handle images and	videos according to size.	