

OFFICE OF THE DEAN ACADEMICS

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE

B. TECH. ARTIFICIAL INTELLIGENCE & DATA SCIENCE

IV YEAR (VII & VIII Semester)

Effective for the students admitted in the year 2020-21

OFFICE OF THE DEAN ACADEMICS

Teaching & Examination Scheme B.Tech.: Artificial Intelligence & Data Science

4th Year - VII Semester

			4 1 Cai - VII								
			THEO	RY							
SN	Category	Category Course Contact hrs/week		Marks				Cr			
		Code	Title	L	Т	P	Exam Hrs	IA	ЕТЕ	Total	
1	PCC	7AD4-01	Deep Learning, NLP and Generative AI	3	0	0	3	30	120	150	3
2	OE		Open Elective – I	3	0	0	3	30	120	150	3
			Sub Total	6	0	0	6	60	240	300	6
	1	•	PRACTICAL &	SESS	ION	AL			I.		
3		7AD4-21	Deep Learning Lab	0	0	4	2	60	40	100	2
4	PCC	7AD4-22	Natural Language Processing Lab	0	0	4	2	60	40	100	2
5	DOM	7AD7-30	Industrial Training	1	0	0	-	75	50	125	2.5
6	PSIT	7AD7-40	Seminar	2	0	0	-	60	40	100	2
7	SODECA	7AD8-00	Social Outreach, Discipline & Extra-Curricular Activities	-	-	-	-	0	25	25	0.5
			Sub- Total	3	0	8	-	255	195	450	9
		TOTA	AL OF VII SEMESTER	9	0	8	-	315	435	750	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

OFFICE OF THE DEAN ACADEMICS

Teaching & Examination Scheme B.Tech.: Artificial Intelligence & Data Science

4th Year - VIII Semester

			THEO	RY							
			Course	4	onta						
SN	Category			hrs/week			Marks				Cr
		Code	Title	L	Т	P	Exa m Hrs	IA	ЕТЕ	Total	
1	PCC/PEC	8AD4-01	Statistical Modeling and Forecasting	3	0	0	3	30	120	150	3
2	OE		Open Elective – II	3	0	0	3	30	120	150	3
			Sub Total	6	0	0	6	60	240	300	6
	PRACTICAL & SESSIONAL										
3	PCC	8AD4-21	Statistical Modeling and Forecasting Lab	0	0	2	2	30	20	50	1
4		8AD4-22	Big Data Analytics Lab	0	0	2	2	30	20	50	1
5	PSIT	8AD7-0	Project	3	0	0	-	210	140	350	7
7	SODE CA	8AD8-00	Social Outreach, Discipline & Extra-Curricular Activities	-	-	-	-	-	25	25	0.5
			Sub- Total	3	0	4	-	270	205	475	9.5
		TOTA	L OF VIII SEMESTER	9	0	4	-	330	445	775	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

OFFICE OF THE DEAN ACADEMICS

List	of Open Electives for A	rti	ficial Intell	igence & Data Science
Subject Code	Title		Subject Code	Title
	Open Elective - I			Open Elective - II
7AG6-60.1	Human Engineering and Safety		8AG6-60.1	Energy Management
7AG6-60.2	Environmental Engineering and Disaster Management		8AG6-60.2	Waste and By-product Utilization
7AN6-60.1	Aircraft Avionic System		8AN6-60.1	Finite Element Methods
7AN6-60.2	Non-Destructive Testing		8AN6-60.2	Factor of Human Interactions
7CH6-60.1	Optimization Techniques		8CH6-60.1	Refinery Engineering Design
7CH6-60.2	Sustainable Engineering		8CH6-60.2	Fertilizer Technology
7CR6-60.1	Introduction to Ceramic Science & Technology		8CR6-60.1	Electrical and Electronic Ceramics
7CR6-60.2	Plant, Equipment and Furnace Design		8CR6-60.2	Biomaterials
7CE6-60.1	Environmental Impact Analysis		8CE6-60.1	Composite Materials
7CE6-60.2	Disaster Management		8CE6-60.2	Fire and Safety Engineering
7EE6-60.1	Electrical Machines and Drives		8EE6-60.1	Energy Audit and Demand side Management
7EE6-60.2	Power Generation Sources.		8EE6-60.2	Soft Computing
7EC6-60.1	Principle of Electronic communication		8EC6-60.1	Industrial and Biomedical applications of RF Energy
7EC6-60.2	Micro and Smart System Technology		8EC6-60.2	Robotics and control
7ME6-60.1	Finite Element Analysis		8ME6-60.1	Operations Research
7ME6-60.2	Quality Management		8ME6-60.2	Simulation Modeling and Analysis
7MI6-60.1	Rock Engineering		8MI6-60.1	Experimental Stress Analysis
7MI6-60.2	Mineral Processing		8MI6-60.2	Maintenance Management
7PE6-60.1	Pipeline Engineering		8PE6-60.1	Unconventional Hydrocarbon Resources
7PE6-60.2	Water Pollution control Engineering		8PE6-60.2	Energy Management & Policy
7TT6-60.1	Technical Textiles		8TT6-60.1	Material and Human Resource Management
7TT6-60.2	Garment Manufacturing Technology		8TT6-60.2	Disaster Management

OFFICE OF THE DEAN ACADEMICS

4th Year - VII Semester B. Tech. (Artificial Intelligence & Data Science)

.....

7AD4-01: Deep Learning, NLP and Generative AI

Credit: 3 Max. Marks: 150(IA:30, ETE:120)
3L+0T+0P End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction to Neural Networks	7
	Introduction of artificial neural network and deep learning, characteristics of neural	
	networks terminology, neurons, perceptron, backpropagation, Basic learning laws,	
	Activation and Loss function - Function approximation, applications	
2	Improving Deep Neural Networks	
	Training a deep neural network, hyper-parameter tuning, Hidden layers, Generalization Gap – Under-fitting Vs Over-fitting – Optimization, Normalization	7
3	Introduction to Convolution Neural Networks	
	CNN Architecture and Operations, convolutional layer, Pooling layer, Variants of the	10
	Convolution Model	10
	Introduction to Recurrent Networks	
	Recurrent Neural Networks - Bidirectional RNNs, Encoder, Decoder, Sequence-to-	
	Sequence Architectures, Deep Recurrent Networks, Auto encoders, LSTM, Gated	
	RNNs.	
4	Basic Overview of Natural Language Processing: Various stages of NLP, Text	8
	Preprocessing, Language Modelling and Large Language Models, Applications of	
	NLP	
5	Basic Overview of Generative AI: A basic introduction to Generative AI,	8
	Background on Generative AI, Generative Adversarial Networks, Transformers,	
	diffusion models, Stable Diffusion	
	Basic overview of Generative AI models: OpenAI models (ChatGPT, GPT 4.0,	
	DALL-E 2), Google Bard, Microsoft models (CoDi, Kosmos-2)	
		40

OFFICE OF THE DEAN ACADEMICS

Suggested Books:

- 1. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017(Url: https://www.deeplearningbook.org/)
- 2. James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.
- 3. Goodfellow, Ian, et al. "Generative Adversarial Networks." arXiv preprint arXiv:1406.2661 (2014).
- 4. François Chollet "Deep Learning with Python," First Edition, Manning Publication, 2018
- 5. Neural Networks and Deep Learning, Michael Nielsen, Determination Press (2015) Url: http://neuralnetworksanddeeplearning.com/
- 6. Deep Learning Step by Step with Python, N D Lewis, 2016
- 7. Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017
- 8. Nitin Indurkhya, Fred J. Damerau "Handbook of Natural Language Processing", Second Edition, CRC Press, 2010.
- 9. Chris Manning and HinrichSchütze, "Foundations of Statistical Natural Language Processing", 2nd edition, MITPress Cambridge, MA, 2003.
- 10. Hobson lane, Cole Howard, Hannes Hapke, "Natural language processing in action" MANNING Publications, 2019.
- 11. Alexander Clark, Chris Fox, Shalom Lappin, "The Handbook of Computational Linguistics and Natural Language Processing", Wiley-Blackwell, 2012
- 12. Rajesh Arumugam, Rajalingappa Shanmugamani "Hands-on natural language processing with python: A practical guide to applying deep learning architectures to your NLP application". PACKT publisher, 2018.
- 13. GAN for Efficient & High Fidelity Speech Synthesis https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html
- 14. Generative Models. OpenAI, https://openai.com/generative-models/
- 15. DALL·E 2, https://openai.com/dall-e-2
- 16. Kosmos-2: Grounding Multimodal Large Language Models to the World, https://arxiv.org/abs/2306.14824
- 17. CoDi: Any-to-Any Generation via Composable Diffusion, https://codi-gen.github.io/
- 18. An overview of Bard: an early experiment with generative AI, https://ai.google/static/documents/google-about-bard.pdf

OFFICE OF THE DEAN ACADEMICS

4th Year - VII Semester B. Tech. (Artificial Intelligence & Data Science)

.....

7AD4-21: Deep Learning Lab

Credit: 2 Max Marks: 100 (IA :60, ETE:40) 0L+ 0T+ 4P End Term Exams: 2 hr

Exp. No.	List of Experiments
1	Demonstration and implementation of Shallow architecture using Python, TensorFlow and Keras i) Google Colaboratory - Cloning GitHub repository, Upload Data, Importing Kaggle's
	dataset, Basic File operations ii) Implementing Perceptron, iii) Digit Classification: Neural network to classify MNIST dataset
2	Basic implementation of a deep Learning models in PyTorch and Tensor Flow. Tune its performance by adding additional layers provided by the library.
3	Implement custom operations in PyTorch by using deep learning via gradient descent; recursive chain rule (backpropagation); bias-variance tradeoff, regularization; output units: linear, softmax; hidden units: tanh, RELU.
4	Implement a simple CNN starting from filtering, Convolution and pooling operations and arithmetic of these with Visualization in PyTorch and Tensorflow.
5	ConvNet Architectures: Implement a famous convNet architectures - AlexNet, ZFNet, VGG, C3D, GoogLeNet, ResNet, MobileNet-v1.
6	Convolution Neural Network application using TensorFlow and Keras, i) Classification of MNIST Dataset using CNN ii) Face recognition using CNN
7	Image denoising (Fashion dataset) using Auto Encoders Handling Color Image in Neural Network aka Stacked Auto Encoders (Denoising)
8	Text processing, Language Modeling using RNN
9	Time Series Prediction using RNN
10	Sentiment Analysis using LSTM
11	Image generation using GAN

OFFICE OF THE DEAN ACADEMICS

4th Year - VII Semester B. Tech. (Artificial Intelligence & Data Science)

.....

7AD4-22: Natural Language Processing Lab

Credit: 2 Max Marks: 100 (IA :60, ETE:40)
0L+0T+4P End Term Exams: 2 hr

SN	List of Experiments
1	Word Analysis
2	Word Generation
3	Morphology
4	N-Grams
5	N-Grams Smoothing
6	POS Tagging: Hidden Markov Model
7	POS Tagging: Viterbi Decoding
8	Building POS Tagger
9	Chunking
10	Building Chunker

Resource:

1. Natural Language Processing virtual lab: https://nlp-iiith.vlabs.ac.in/Introduction.html

OFFICE OF THE DEAN ACADEMICS

4th Year - VIII Semester B. Tech. (Artificial Intelligence & Data Science)

.....

8AD4-01: Statistical Modeling and Forecasting

Credit: 3 Max Marks: 150 (IA :30, ETE:120)

3L+0T+0P End Term Exams: 3 hr

JLT	U1+ UP End Term Exams: 5 nr	
SN	Contents	Hours
1	Basic Properties of time-series data: Distribution and moments, Stationarity,	7
	Autocorrelation, Heteroscedasticity, Normality	
	Introduction of Time Series Analysis: Introduction to Time Series and Forecasting,	
	Different types of data, Internal structures of time series. Models for time series analysis,	
	Examples of Time series Nature and uses of forecasting, Forecasting Process, Data for	
	forecasting, Resources for forecasting.	
2	Statistics Background For Forecasting: Graphical Displays, Time Series Plots, Plotting	
	Smoothed Data, Numerical Description of Time Series Data, Use of Data Transformations	7
	and Adjustments, General Approach to Time Series Modelling and Forecasting, Evaluating	
	and Monitoring Forecasting Model Performance.	
	Random walk model: Non-stationarity and unit-root process, Drift and Trend models	
3	Autoregressive models and forecasting: Autocorrelation and Partial autocorrelation,	10
	Autoregressive Moving Average (ARMA) Models , Autoregressive Integrated Moving	10
	Average (ARIMA) Models, Forecasting using ARIMA, Seasonal Data, Seasonal ARIMA	
	Models Forecasting using Seasonal ARIMA Models	
	Introduction to Vector Auto-regressive (VAR) models: Impulse Response Function (IRF),	
	Error Correction Models, Co-integration, Vector ARIMA Models, Vector AR (VAR) Model	
	Model Selection Criteria: Finding the "BEST" Model, Impulse Response Function to Study	
	the Differences in Models Comparing Impulse Response Functions for Competing Models .	
4	Time Series Regression Model: Introduction Least Squares Estimation in Linear Regression	
	Models, Statistical Inference in Linear Regression, Prediction of New Observations, Model	
	Adequacy Checking, Variable Selection Methods in Regression, Generalized and Weighted	8
	Least Squares, Regression Models for General Time Series Data, Exponential Smoothing,	
	First order and Second order.	
5	Multivariate Time Series Models and Forecasting: Multivariate Time Series Models and	
	Forecasting, Multivariate Stationary Process	
	Panel data models: Fixed-Effect and Random-Effect models	10
	Introduction to Neural Networks and Forecasting Spectral Analysis, Bayesian Methods in	
	Forecasting, Principal Component Analysis (PCA) and Factor Analysis	
		42

OFFICE OF THE DEAN ACADEMICS

Suggested Books:

- 1. Introduction To Time Series Analysis And Forecasting, 2nd Edition, Wiley Series In Probability And Statistics, By Douglas C. Montgomery, Cheryl L. Jen(2015)
- 2. Master Time Series Data Processing, Visualization, And Modeling Using Python Dr. Avishek Pal Dr. Pks Prakash (2017)
- 3. Chris Brooks "Introductory Econometrics for Finance," Fourth Edition, Cambridge University Press 2019
- 4. Ruey S. Tsay "Analysis of Time-series data," Third Edition, Wiley 2014
- 5. John Fox and Sanford Weisberg "An R Companion to Applied Regression," Third Edition, SAGE 2018
- 6. Yves Croissant and Giovanni Millo "Panel Data Econometrics with R," First Edition, Wiley 2018

OFFICE OF THE DEAN ACADEMICS

4th Year - VIII Semester B. Tech. (Artificial Intelligence & Data Science)

.....

8AD4-21: Statistical Modeling and Forecasting Lab

Credit: 1 Max Marks: 50 (IA :30, ETE:20)

0L+ 0T+ 2P End Term Exams: 2 hr

For Following experimentation following time series data may be used:

- 1.Download Monthly, Seasonal and Annual Min, Max and avg Temp Series from 1901 to 2017 from https://data.gov.in/catalog/all-india-seasonal-and-annual-minmax-temperature-series.
- 2.Stock market dataset https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
- 3. Any Kaggle time series dataset https://www.kaggle.com

Exp. No.	List of Experiments
1	Cleaning, Preprocessing and Handling Time Series Data
1	Time Series Data Cleaning
	Loading and Handling Times series data
	Preprocessing Techniques
2	How to Checking Stationarity of a Time Series and making Time Series data Stationary
_	Estimating & Eliminating Trend.
	Aggregation
	Smoothing
	Polynomial Fitting
	Eliminating Trend and Seasonality
	Differencing
	Decomposition
	Time Series analysis
	a) Moving Average time analysis data.
3	b) Smoothing the Time analysis Data.
	c) Check out the Time series Linear and non-linear trends.
4	Time Series Modelling and Forecasting
·	Moving average
	Exponential smoothing
	• ARIMA
	Seasonal autoregressive integrated moving average model (SARIMA)

OFFICE OF THE DEAN ACADEMICS

	Dependence Techniques
5	Multivariate Analysis of Variance and Covariance
	Canonical Correlation Analysis
	Structural Equation Modeling
	Inter-Dependence Techniques
	Factor Analysis
	Cluster Analysis

OFFICE OF THE DEAN ACADEMICS

4th Year - VIII Semester B. Tech. (Artificial Intelligence & Data Science)

8AD4-22: Big Data Analytics Lab

Credit: 1 Max Marks: 50 (IA :30, ETE:20)

0L+ 0T+ 2P End Term Exams: 2 hr

Exp. No.	List of Experiments	
1	Implement the following Data structures in Java	
-	i) Linked Lists ii) Stacks iii) Queues iv) Set v) Map	
2	Perform setting up and Installing Hadoop in its three operating modes: Standalone, Pseudo	
	distributed, Fully distributed.	
	Implement the following file management tasks in Hadoop:	
_	Adding files and directories	
3	Retrieving files	
	Deleting files Hint: A typical Hadoop workflow creates data files (such as log files)	
	elsewhere and copies them into HDFS using one of the above command line utilities.	
4	Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.	
	Write a Map Reduce program that mines weather data. Weather sensors collecting data	
5	every hour at many locations across the globe gather a large volume of log data, which is	
	a good candidate for analysis with MapReduce, since it is semi structured and record-	
	oriented.	
6	Implement Matrix Multiplication with Hadoop Map Reduce	
7	Install and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your	
,	data.	
8	Install and Run Hive then use Hive to create, alter, and drop databases, tables, views,	
O	functions, and indexes.	
9	Solve some real life big data problems.	