

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE

B. TECH. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

IV YEAR (VII & VIII Semester)

Effective for the students admitted in the year 2020-21 and onwards

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

Teaching & Examination Scheme B.Tech.: Artificial Intelligence and Machine Learning 4th Year - VII Semester

			THEO	RY							
SN	Category		Course	Contact hrs/week		Marks				Cr	
		Code	Title	L	Т	Р	Exam Hrs	IA	ETE	Total	
1	PCC	7AM4-01	Internet of Things	3	0	0	3	30	120	150	3
2	OE		Open Elective – I	3	0	0	3	30	120	150	3
		Sub Total		6	0	0	6	60	240	300	6
		I	PRACTICAL &	SESS	ION	AL				1	
3	PCC	7AM4-21	Internet of Things Lab	0	0	4	2	60	40	100	2
4	rcc	7AM4-22	Cyber Security Lab	0	0	4	2	60	40	100	2
5	DCIT	7AM7-30	Industrial Training	1	0	0	-	75	50	125	2.5
6	PSIT	7AM7-40	Seminar	2	0	0	-	60	40	100	2
7	SODECA	7AM8-00	Social Outreach, Discipline & Extra-Curricular Activities	-	-	-	-	0	25	25	0.5
		Sub- Total		3	0	8	-	255	195	450	9
		TOTAL OF VII SEMESTER		9	0	8	-	315	435	750	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Teaching & Examination Scheme B.Tech.: Artificial Intelligence and Machine Learning 4th Year - VIII Semester

			THEOI	RY							
SN	Category	Course		Contact hrs/week			Marks				Cr
		Code	Title	L	Т	Р	Exa m Hrs	IA	ETE	Total	
1	PCC/PEC	8AM4-01	Deep Learning	3	0	0	3	30	120	150	3
2	OE		Open Elective – II	3	0	0	3	30	120	150	3
			Sub Total	6	0	0	6	60	240	300	6
			PRACTICAL &	SESS	ION	AL					
3		8AM4-21	Deep Learning Lab	0	0	2	2	30	20	50	1
4	PCC	8AM4-22	Statistical Modeling and Forecasting Lab	0	0	2	2	30	20	50	1
5	PSIT	8AM7-0	Project	3	0	0	-	210	140	350	7
7	SODECA	8AM8-00	Social Outreach, Discipline & Extra-Curricular Activities	-	-	-	-	-	25	25	0.5
			Sub- Total	3	0	4	-	270	205	475	9.5
		ТОТА	TOTAL OF VIII SEMESTER		0	4	-	330	445	775	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Subject	Title	Subject	Title
Code		Code	
	Open Elective - I		Open Elective - II
7AG6-60.1	Human Engineering and Safety	8AG6-60.1	Energy Management
7AG6-60.2	Environmental Engineering and Disaster Management	8AG6-60.2	Waste and By-product Utilization
7AN6-60.1	Aircraft Avionic System	8AN6-60.1	Finite Element Methods
7AN6-60.2	Non-Destructive Testing	8AN6-60.2	Factor of Human Interactions
7CH6-60.1	Optimization Techniques	8CH6-60.1	Refinery Engineering Design
7CH6-60.2	Sustainable Engineering	8CH6-60.2	Fertilizer Technology
7CR6-60.1	Introduction to Ceramic Science & Technology	8CR6-60.1	Electrical and Electronic Ceramics
7CR6-60.2	Plant, Equipment and Furnace Design	8CR6-60.2	Biomaterials
7CE6-60.1	Environmental Impact Analysis	8CE6-60.1	Composite Materials
7CE6-60.2	Disaster Management	8CE6-60.2	Fire and Safety Engineering
7EE6-60.1	Electrical Machines and Drives	8EE6-60.1	Energy Audit and Demand side Management
7EE6-60.2	Power Generation Sources.	8EE6-60.2	Soft Computing
7EC6-60.1	Principle of Electronic communication	8EC6-60.1	Industrial and Biomedical applications of RF Energy
7EC6-60.2	Micro and Smart System Technology	8EC6-60.2	Robotics and control
7ME6-60.1	Finite Element Analysis	8ME6-60.1	Operations Research
7ME6-60.2	Quality Management	8ME6-60.2	Simulation Modeling and Analysis
7MI6-60.1	Rock Engineering	8MI6-60.1	Experimental Stress Analysis
7MI6-60.2	Mineral Processing	8MI6-60.2	Maintenance Management
7PE6-60.1	Pipeline Engineering	8PE6-60.1	Unconventional Hydrocarbon Resources
7PE6-60.2	Water Pollution control Engineering	8PE6-60.2	Energy Management & Policy
7TT6-60.1	Technical Textiles	8TT6-60.1	Material and Human Resource Management
7TT6-60.2	Garment Manufacturing Technology	8TT6-60.2	Disaster Management

CELEBRATING THE MAHATMA

4th Year - VII Semester

B. Tech. (Artificial Intelligence and Machine Learning)

7AM4-01: Internet of Things

Credit: 3

Max Marks: 150 (IA :30, ETE:120)

SN	Contents	Hours
1	Introduction: Objective, scope and Outcome of the course.	01
2	Introduction to IoT: Definition and characteristics of IoT, Design of IOT:	07
	Physical design of IOT, Logical Design of IOT- Functional Blocks, communication	
	models, communication APIs, IOT enabling Technologies- Wireless Sensor	
	Networks, Cloud computing, big data analytics, embedded systems. IOT Levels	
	and deployment templates.	
3	IoT Hardware and Software: Sensor and actuator, Humidity sensors,	08
	Ultrasonic sensor, Temperature Sensor, Arduino, Raspberry Pi, LiteOS, RIoTOS,	
	Contiki OS, Tiny OS.	
4	Architecture and Reference Model: Introduction, Reference Model and	08
	architecture, Representational State Transfer (REST) architectural style,	
	Uniform Resource Identifiers (URIs). Challenges in IoT- Design challenges,	
	Development challenges, Security challenges, Other challenges.	
5	IOT and M2M: M2M, Difference and similarities between IOT and M2M,	08
	Software defined networks, network function virtualization, difference	
	between SDN and NFV for IoT.	
6	Case study of IoT Applications: Domain specific IOTs- Home automation,	08
	Cities, environment, Energy, Retail, Logistics, Agriculture, Industry, Health and	
	Lifestyles.	
	Total	40

TEXTBOOKS:

- 1. IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, Cisco Press, 2017
- 2. Internet of Things A hands-on approach, Arshdeep Bahga, Vijay Madisetti, Universities Press, 2015
- 3. Internet of Things: Architecture, Design Principles And Applications, Rajkamal, McGraw Hill **HigherEducation**

 "From Machine-to-Machine to the Internet of Things – Introduction to a New Age of Intelligence", Jan Ho" ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle and Elsevier, 2014.

BIKANER TECHNICAL UNIVERSITY, BIKANE बीकानेर तकनीकी विश्वविद्यालय, बीकानेर

OFFICE OF THE DEAN ACADEMICS

4th Year - VII Semester

B. Tech. (Artificial Intelligence and Machine Learning)

7AM4-21: Internet of Things Lab

List of Experiments

Max Marks: 100 (IA :60, ETE:40)

End Term Exams: 2 hr

0L + 0T + 4P

Credit: 2

SN

SN	List of Experiments						
1	Start Raspberry Pi and try various Linix commands in command terminal window:						
1	ls, cd, touch, mv, rm, man, mkdir, rmdir, tar, gzip, cat, more, less, ps, sudo, cron, chown, chgrp, ping						
	etc.						
2	Run some python programs on Pi like:						
	a) Read your name and print Hello message with name						
	b) Read two numbers and print their sum, difference, product and division.						
	c) Word and character count of a given string.						
	d) Area of a given shape (rectangle, triangle and circle) reading shape and appropriate values						
	from standard input.						
3	Run some python programs on Pi like:						
	a) Print a name 'n' times, where name and n are read from standard input, using for and while						
	loops.						
	b) Handle Divided by Zero Exception.						
	c) Print current time for 10 times with an interval of 10 seconds.						
	d) Read a file line by line and print the word count of each line.						
4	a) Light an LED through Python program						
-	b) Get input from two switches and switch on corresponding LEDs						
	c) Flash an LED at a given on time and off time cycle, where the two times are taken						
	from a file.						
5	a) Flash an LED based on cron output (acts as an alarm)						
	b) Switch on a relay at a given time using cron, where the relay's contact terminals are						
	connected to a load.						
	c) Get the status of a bulb at a remote place (on the LAN) through web.						
6	The student should have hands on experience in using various sensors like temperature,						
	humidity, smoke, light, etc. and should be able to use control web camera, network, and						
	relays connected to the Pi.						

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर

4th Year - VII Semester B. Tech. (Artificial Intelligence and Machine Learning)

7AM4-22: Cyber Security Lab

Credit: 2 0L+ 0T+ 4P

Max Marks: 100 (IA :60, ETE:40) End Term Exams: 2 hr

SN	List of Experiments
1	Implement the following Substitution & Transposition Techniques concepts:
1	a) Caesar Cipher b) Rail fence row & Column Transformation
	Implement the Diffie-Hellman Key Exchange mechanism using HTML and
2	JavaScript. Consider the end user as one of the parties (Alice) and the JavaScript
	application as other party (bob).
3	Implement the following Attack:
5	a) Dictionary Attack b) Brute Force Attack
	Installation of Wire shark, tcpdump, etc and observe data transferred in client server
4	communication using UDP/TCP and identify the UDP/TCP
	datagram.
5	Installation of root kits and study about the variety of options.
5	
6	Perform an Experiment to Sniff Traffic using ARP Poisoning.
0	
7	Demonstrate intrusion detection system using any tool (snort or any other s/w).
0	Demonstrate how to provide secure data storage, secure data transmission
8	and for creating digital signatures.
	PROJECT: In a small area location such as a house, office or in a classroom, there
	is a small network called a Local Area Network (LAN). The project aims to transfer
	a file peer-to-peer from one computer to another computer in the same LAN. It
	provides the necessary authentication for file transferring in the network
	transmission. By implementing the Server-Client technology, use a File Transfer
	Protocol mechanism and through socket programming, the end user is able to send
	and receive the encrypted and decrypted file in the LAN. An additional aim of the
	project is to transfer a file between computers securely in LANs. Elements of
	Officer Dilzonar Technical University Dilzonar

security are needed in the project because securing the files is an important task,
which ensures files are not captured or altered by anyone on the same network.
Whenever you transmit files over a network, there is a good chance your data will
be encrypted by encryption technique.
Any algorithm like AES is used to encrypt the file that needs to transfer to another
computer. The encrypted file is then sent to a receiver computer and
will need to be decrypted before the user can open the file.

Credit: 3

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

4th Year - VIII Semester B. Tech. (Artificial Intelligence and Machine Learning)

8AM4-01: Deep Learning

Max Marks: 150 (IA :30, ETE:120) End Term Exams: 3 hr

	0T+ 0P End Term Ex	
S. No	Content	Hour
1	Introduction: Objective, scope and outcome of the course.	1
2	Neural Networks - Binary Classification, Logistic Regression, Gradient Descent, Derivatives, Computation graph, Vectorization, Vectorizing logistic regression – Shallow neural networks: Activation functions, non-linear activation functions, Backpropagation, Data classification with a hidden layer	7
3	Deep Neural Networks: Deep L-layer neural network, Forward and Backward propagation, Deep representations, Parameters vs Hyperparameters, Building a Deep Neural Network (Application).	8
4	Supervised Learning with Neural Networks – Practical aspects of Deep Learning: Train/Dev / Test sets, Bias/variance, Overfitting and regularization, Linear models and optimization, Vanishing/exploding gradients, Gradient checking – Logistic Regression, Convolution Neural Networks, RNN and Backpropagation – Convolutions and Pooling.	8
5	Optimization algorithms: Mini-batch gradient descent, exponentially weighted averages, RMS prop, Learning rate decay, the problem of local optima, Batch norm – Parameter tuning process.	8
6	Neural Network Architectures – Recurrent Neural Networks, Adversarial NN, Spectral CNN, Self-Organizing Maps, Restricted Boltzmann Machines, Long Short-Term Memory Networks (LSTM) and Deep Reinforcement Learning – Tensor Flow, Keras or MatConvNet for implementation.	8
	Total	40

TEXTBOOKS:

- 1. Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017
- 2. James Allen "Natural Language Understanding", Pearson Publication 8th Edition. 2012.

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

- 3. Goodfellow, Ian, et al. "Generative Adversarial Networks." arXiv preprint arXiv:1406.2661 (2014).
- 4. François Chollet "Deep Learning with Python," First Edition, Manning Publication, 2018
- 5. Neural Networks and Deep Learning, Michael Nielsen, Determination Press

4th Year - VIII Semester

B. Tech. (Artificial Intelligence and Machine Learning)

8AM4-21: Deep Learning Lab

Credit: 1 0L+ 0T+ 2P Max Marks: 50 (IA :30, ETE:20) End Term Exams: 2hr

S. No.	List of Experiments
1	Basic implementation of a MLP in numpy and Tensor Flow
2	Basic implementation of a deep Learning models in PyTorch and Tensor Flow. Tune its performance by adding additional layers provided by the library.
3	Implement custom operations in PyTorch by using deep learning via gradient descent; recursive chain rule (backpropagation); bias-variance tradeoff, regularization; output units: linear, softmax; hidden units: tanh, RELU.
4	Implement a simple CNN starting from filtering, Convolution and pooling operations and arithmetic of these with Visualization in PyTorch and Tensorflow.
5	ConvNet Architectures: Implement a famous convNet architectures - AlexNet, ZFNet, VGG, C3D, GoogLeNet, ResNet, MobileNet-v1.
6	Familiar with vanilla RNNs and LSTMs on a simple toy problem.
7	Vision and Language: Implement a different tasks involving Vision and Language e.g., Image and video captioning along with the use of attention.
8	Implement Deep Generative Models Variational Auto Encoders (VAE) and Generative Adversarial Networks (GAN) in PyTorch
9	Implementation advance topics: Vision Transformer, Neural Architecture Search, Propose and demonstrate a novel deep learning application project

4 th Year - VIII Semester B. Tech. (Artificial Intelligence and Machine Learning)					
Credit:	8AM4-22: Statistical Modeling and Forecasting Lab 1 Max Marks: 50 (IA :30, ETE:20)				
0L+ 0T					
For Follow	ing experimentation following time series data may be used:				
1.Download	Monthly, Seasonal and Annual Min, Max and avg Temp Series from 1901 to 2017 from				
https://da	ta.gov.in/catalog/all-india-seasonal-and-annual-minmax-temperature-series.				
2.Stock ma	rket dataset https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-				
stocks-etf	<u>s</u>				
3. Any H	Kaggle time series dataset https://www.kaggle.com				
Exp. No.	List of Experiments				
1	Cleaning, Preprocessing and Handling Time Series Data				
	Time Series Data Cleaning				
	Loading and Handling Times series data				
	Preprocessing Techniques				
2	How to Checking Stationarity of a Time Series and making Time Series data Stationary				
	Estimating & Eliminating Trend.				
	• Aggregation				
	Smoothing				
	Polynomial Fitting				
	Eliminating Trend and Seasonality				
	• Differencing				
	Decomposition				
	Time Series analysis				
3	 a) Moving Average time analysis data. b) Smoothing the Time analysis Data 				
-	b) Smoothing the Time analysis Data.c) Check out the Time series Linear and non-linear trends.				
	c) Check out the Time series Linear and non-linear trends. Time Series Modelling and Forecasting				
4	 Moving average 				
	 Exponential smoothing 				
	 ARIMA 				

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

CELEBRATI THE MAHAT

	Seasonal autoregressive integrated moving average model (SARIMA)	
	Dependence Techniques	
5	Multivariate Analysis of Variance and Covariance	
	Canonical Correlation Analysis	
	Structural Equation Modeling	
	Inter-Dependence Techniques	
	Factor Analysis	
	Cluster Analysis	