

SCHEME & SYLLABUS OF UNDERGRADUATE DEGREE COURSE

Internet of Things

V & VI Semester

Effective for the students admitted in year 2020-21 and onwards.

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

			3 rd Year - V	V Se	eme	ster					
			THE								
a N	a .		Course	Contact						G	
S.No.	Category	~ .		hrs./week				Ma	rks		Cr
		Code	Title	L	Т	Р	Exam Hrs.	IA	ETE	Total	
1	ESC	5IO3-01	Information Theory & Coding	2	0	0	2	20	80	100	2
2		5IO4-02	RFID and Wireless Sensor Networks	3	0	0	3	30	120	150	3
3		5IO3-03	Operating Systems	3	0	0	3	30	120	150	3
4		5IO4-04	Fundamentals of IoT and Applications	3	0	0	3	30	120	150	3
5	PCC/PEC	5IO4-05	Analysis of Algorithms	3	0	0	3	30	120	150	3
6		Professional	Elective 1(anyone)	2	0	0	2	20	80	100	2
		5IO5-11	Embedded System Design								
		5105-12	Human-Computer Interaction								
		5IO5-13	Information Security System								
		5IO5-14	Smart Systems								
			Sub Total	16	0	0		160	640	800	16
			PRACTICAL &	& SE	SSI	ONAL	ı				
7		5IO4-21	Arduino Lab	0	0	2	2	30	20	50	1
8		5IO4-22	Network Simulator Lab-3	0	0	2	2	30	20	50	1
9	PCC	5IO4-23	Analysis of Algorithms Lab	0	0	2	2	30	20	50	1
10		5IO4-24	Embedded Systems Lab	0	0	2	2	30	20	50	1
11	PSIT	5107-30	Industrial Training	0	0	1		75	50	125	2.5
12	Anandam	5108-00	ANANDAM						100	100	2
			Sub- Total	0	0	9		195	230	425	8.5
		ΤΟΤΑ	AL OF V SEMESTER	16	0	9		355	870	1225	24.5

B.Tech.: Artificial Intelligence & Data Science

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

			THE	ORY	7						
S.No.	Category		Course	Contact hrs./week		Marks				Cr	
		Code	Title	L	Т	Р	Exam Hrs.	IA	ЕТЕ	Total	
1	ESC	6IO3-01	Digital Image Processing	2	0	0	2	20	80	100	2
2		6IO4-02	Sensor-Concepts and Techniques	3	0	0	3	30	120	150	3
3		6IO3-03	Sensor Networks & IoT	3	0	0	3	30	120	150	3
4		6IO4-04	Cloud Computing	3	0	0	3	30	120	150	3
5	PCC/PEC	6IO4-05	Introduction to Machine Learning	3	0	0	3	30	120	150	3
6	rcc/rEc	Professional	Elective 1(anyone)	3	0	0	3	30	120	150	3
		6IO5-11	Embedded IoT								
		6IO5-12	Distributed System								
		6IO5-13	Data Mining & Predicting Modeling								
		6IO5-14	Artificial Intelligence and Expert Systems								
			Sub Total	17	0	0		170	680	850	17
		-	PRACTICAL &	& SE	SSI	ONAL					
7		6IO4-21	Machine Learning Lab	0	0	3	2	45	30	75	1.5
8		6IO4-22	Raspberry Pi Lab	0	0	3	2	45	30	75	1.5
9	PCC	6IO4-23	IoT Enabled Embedded Devices Lab	0	0	3	2	45	30	75	1.5
10		6IO4-24	Mobile Application Development Lab	0	0	3	2	45	30	75	1.5
11	Anandam	6IO8-00	ANANDAM						100	100	2
			Sub- Total	0	0	12		180	220	400	8
		ΤΟΤΑ	L OF III SEMESTER	17	0	12		350	900	1250	25

B.Tech.: Artificial Intelligence & Data Science 3rd Year - VI Semester

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

SYLLABUS OF UNDERGRADUATE DEGREE COURSE

Internet of Things

V & VI Semester

Effective for the students admitted in year 2020-21 and onwards.

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

5103-01: Information Theory & Coding

	~ ~	on Theory & Counig	
	Credit: 2	Max Marks: 100 (IA :20, ETE:80))
	2L+ 0T+ 0P	End Term Exams: 2hr	
S.No.	Cont	tents	Hours
1	Introduction: Objective, scope and outcome of	of the course	01
2	Introduction to information theory Uncertainty, Information and Entropy, Information measures for continuous random variables, source coding theorem. Discrete Memory less channels, Mutual information, Conditional entropy.		05
3			05
4	Linear Block Code Introduction to error connecting codes, coding & decoding of linear block code, minimum distance consideration, conversion of non-systematic form of matrices into systematic form.		05
5		elds (GF) polynomial operations over Galois lynomial, parity check polynomial. Encoder &	06
6		ode Tree, Trllis and state diagram. Maximum The viterbi Algorithm fee distance of a	06
	То	tal	28

- J. A. Thomas and T. M. Cover: Elements of information theory, Wiley, 2006.
- J. H. van Lint: Introduction to Coding Theory, Third Edition, Springer, 1998.
- F. J. MacWilliams and N.J. Sloane: Theory of Error Correcting Codes, Parts I and II, North-Holland, Amsterdam, 1977.
- D. Stinson: Combinatorial Designs: Constructions and Analysis, Springer, 2003
- P. J. Cameron and J. H. van Lint: Designs, Graphs, Codes and their Links, Cambridge Univ.Press, 2010.
- C. Fragouli and E. Soljanin: Network Coding Fundamentals, Now Publisher, 2007.
- M. Medard and A. Sprintson, (editors): Network Coding Fundamentals and Applications, Acadamic Press, 2012.
- C. Fragouli, J. Le Boudec, J. Widmer: Network coding: An instant primer

5IO4-02: RFID and Wireless Sensor Networks

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.	Con	tents	Hours
1	1 Introduction of RFID, Automatic Identification Systems, A Comparison of Different ID Systems, Components of an RFID System, Differentiation Features of RFID Systems, Transponder Construction Formats, Frequency, Range and Coupling, Active and Passive Transponders, Information Processing in the Transponder, Selection Criteria for RFID Systems, Fundamental Operating Principles		08
2	Frequency Ranges and Radio Licensing Regulations, Coding and Modulation, Data Integrity, Multi-Access Procedures – Anticollision, Security of RFID Systems, Attacks on RFID Systems		08
3	Wireless Sensor Networks- Introduction, Challenges and Constraints, Applications, Node Architecture, Operating Systems, Physical Layer		07
4	Medium Access Control: Characteristics of MAC Protocols in Sensor Networks, Contention Free MAC Protocols, Contention-Based MAC Protocols, Network Layer: Various Routing Protocols.		
5	 Security in WSN: Challenges of Security in Wireless Sensor Networks, Security Attacks in Sensor Networks, Protocols and Mechanisms for Security, IEEE 802.15.4 and ZigBee Security 		
		tal	40

- RFID Handbook, Klaus Finkenzeller, WILEY & SONS
- Fundamentals of Wireless Sensor Networks: theory and practice by Waltenegus Dargie, Christian Poellabauer
- RFID and Sensor Networks Architecture, Protocols, Security and integration by Yan Zhang, Laurence T. Yang, Jining.
- Ian F. Akyildiz, and Mehmet Can Vuran, Wireless Sensor Networks, 2010, Wiley, USA.
- 3IBM Bluemix: The Cloud Platform for Creating and Delivering Applications, http://www.redbooks.ibm.com/redpapers/pdfs/redp5242.pdf
- Wireless Sensor Networks Technology, protocols and applications by KAZEM SOHRABY, DANIEL MINOLI TAIEB ZNATI, JOHN WILEY & SONS, INC Publication.

5IO4-03: Operating Systems

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.	Con	tents	Hours
1	Introduction: Objective, scope and outcome of the course.		01
2	Introduction and History of Operating systems: Structure and operations; processes and files Processor management: inter-process communication, mutual exclusion, semaphores, wait and signal procedures, process scheduling, and algorithms, critical sections, threads, multithreading		08
3	Memory management: contiguous memory allocation, virtual memory, paging, page table structure, demand paging, page replacement policies, thrashing, segmentation, case study		
4	 Deadlock: Shared resources, resource allocation, and scheduling, resource graph models, deadlock detection, deadlock avoidance, deadlock prevention algorithms Device management: devices and their characteristics, device drivers, device handling, disk scheduling algorithms, and policies. 		10
5	File management: file concept, types and structures, directory structure, cases studies, access methods and matrices, file security, user authentication 07		07
6	UNIX and Linux operating systems as case studies; Time OS and case studies of Mobile OS		
	Total		

- Silberschatz, P. B. Galvin and G. Gagne, Operating System Concepts (9 ed.), John Wiley, 2012. ISBN 978-1118063330.
- Tanenbaum, Modern Operating Systems (3 ed.), Prentice Hall India Learning Private Limited, 2019. ISBN 978-8120339040.
- W. Stallings, Operating Systems Internals and Design Principles (7 ed.), Prentice-Hall, 2013. ISBN 978-9332518803
- Operating Systems William Stallings, Pearson Education Asia (2002)
- Operating Systems Nutt, Pearson Education Asia (2003)

5IO4-04: Fundamentals of IoT and Applications

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.	C	Contents	Hours
1	Fundamentals of IoT		08
	Introduction, Definitions & Characteristics of IoT, IoT Architectures, Physical & Logical Design		
	of IoT, Enabling Technologies in IoT, History	of IoT, About Things in IoT, The Identifiers in IoT,	
	About the Internet in IoT, IoT frameworks, Io	oT and M2M.	
2	Sensors Networks		08
		uators, Examples and Working, IoT Development	
	• •	aspberriPi Development Kit, RFID Principles and	
	-	istory and Context, The node, Connecting nodes,	
	Networking Nodes, WSN and IoT.		
3		chnologies for IoT: IEEE 802.15.4, Zigbee, HART,	
	NFC, Z-Wave, BLE, Bacnet, Modbus.		08
		PAN, RPL, REST, AMPQ, CoAP, MQTT. Edge	
	connectivity and protocols		
4	Data Handling & Analytics		08
		cteristics of Big data, Data handling Technologies,	
	A	ge, Introduction to Hadoop. Introduction to data	
	Analytics, Types of Data analytics, Local An	alytics, Cloud analytics and applications	
_	Applications of IoT		08
5		tail Management, Logistics, Agriculture, Health and	
	Lifestyle, Industrial IoT, Legal challenges, Io	T design Ethics, IoT in Environmental Protection.	
		Total	40
C	gostad Daales		

Suggested Books

- Olivier Hersent, David Boswarthick, and Omar Elloumi, "The Internet of Things: Key Applications and Protocols", WileyPublications
- Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)",1st Edition, VPT, 2014.
- J. Biron and J. Follett, "Foundational Elements of an IoT Solution", O'Reilly Media, 2016.
- Keysight Technologies, "The Internet of Things: Enabling Technologies and Solutions for Design and Test", Application Note, 2016.
- Hakima Chaouchi, "The Internet of Things Connecting Objects to the Web" ISBN : 978-1- 84821-140-7, Wiley Publications
- Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publications
- Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press
- https://onlinecourses.nptel.ac.in/noc17_cs22/course
- http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

5IO4-05: Analysis of Algorithms

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.	S.No. Contents		Hours
1	Introduction: Objective, scope, and out	come of the course.	01
2		Complexity Order Notations: definitions and conquer Method : Binary Search, Merge Sort, lication algorithms.	06
3	Greedy Method: Knapsack Problem, Job Sequencing, Optimal Merge Patterns, and Minimal Spanning Trees.Optimal Spanning Trees.DynamicProgramming: Matrix Chain Multiplication. Longest Common09Subsequence and 0/1 Knapsack Problem.09		
4	Branch And Bound: Traveling Salesman Problem and Lower Bound Theory.08Backtracking Algorithms and queens' problem.08Pattern Matching Algorithms: Naïve and Rabin Karp string matching algorithms, KMP Matcher and Boyer Moore Algorithms.08		
5	Assignment Problems: Formulation of Assignment and Quadratic Assignment Problem. Randomized Algorithms- Las Vegas algorithms, Monte Carlo algorithms, a randomized algorithm for Min-Cut, randomized algorithm for 2- SAT. Problem definition of Multicommodity flow, Flow shop scheduling, and Network capacity08		
6	assignment problems. assignment problems. 6 Problem Classes Np, Np-Hard, And Np-Complete: Definitions of P, NP-Hard and NP-Complete Problems. Decision Problems. Cook's Theorem. Proving NP-Complete Problems - Satisfiability problem and Vertex Cover Problem. Approximation Algorithms for Vertex Cover and Set Cover Problem. 08		08
	,	Total	40

Suggested Books

- T.H. Cormen, C.E. Leiserson, R.L. Rivest "Introduction to Algorithms", PHI.
- Sedgewich, Algorithms in C, Galgotia
- Berman. Paul, "Algorithms, Cengage Learning".
- Richard Neopolitan, Kumar SS Naimipour, "Foundations of Algorithms"
- Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006
- E. Horowitz, S. Sahni, and S. Rajsekaran, "Fundamentals of Computer Algorithms," Galotia Publication

5IO4-11: Embedded System Design

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: https://btu.ac.in

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर

OFFICE OF THE DEAN ACADEMICS

	Credit: 2	Max Marks: 100 (IA :20, ETE:80)	
	$2\mathbf{L} + 0\mathbf{T} + 0\mathbf{P}$	End Term Exams: 2hr	
S.No.	Co	ntents	Hours
1	Introduction To Embedded Concepts Introduction to embedded systems, Application Areas, Categories of embedded systems, Overview of embedded system architecture, Specialties of embedded systems, recent trends in embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software.		08
2	Overview Of ARM and Cortex-M3		08
-	Background of ARM Architecture, Architecture Development, Thumb-2 and Instruction Set An Purpose Registers, Stack Pointer, Link Register Mode, Exceptions and Interrupts, Vector Tab CortexM3Instruction Sets: Assembly Basics,	ure Versions, Processor Naming, Instruction Set rchitecture. Cortex-M3 Basics: Registers, General er, Program Counter, Special Registers, Operation les, Stack Memory Operations, Reset Sequence. Instruction List, Instruction Descriptions.Cortex- & Diagram, Bus. Interfaces on Cortex-M3, I-Code and DAP Bus	
3	Cortex Exception Handling and Interrupt		08
	Fault Exceptions, Supervisor Call and Pendab Controller Overview, Basic Interrupt Configu	r Tables, Interrupt Inputs and Pending Behavior, le Service Call. NVIC: Nested Vectored Interrupt ration, Software Interrupts and SYSTICK Timer. ences, Exception Exits, Nested Interrupts, Tail- ot Latency	
4	Cortex-M3/M4 Programming	•	08
	Interface Standard), Using Assembly. Exception/Interrupt Handlers, Software Interru Unit and other Cortex-M3 features: MPU Reg Multiprocessor Communication.	pts, Vector Table Relocation. Memory Protection isters, Setting Up the MPU, Power Management,	
5	Cortex-M3/M4 Development and Debuggin		08
	Control, Reset and Clock Control. STM32L1 Controller, NVIC, ADC, Comparators, GP	ontroller: Memory and Bus Architecture, Power 5xxx Peripherals: GPIOs, System Configuration Timers, USART. Development and Debugging s Assembler, Compiler, Debugger, Simulator, In-	
		otal	40

Suggested Books

• A Joseph Yiu," The Definitive Guide to the ARM Cortex-M3", Second Edition, Elsevier Inc. 2010.

Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer'sGuide Designing and • Optimizing System Software", Elsevier Publications, 2006

- Steve Furber, "ARM System-on-Chip Architecture", 2nd Edition, Pearson Education, India ISBN: • 9788131708408, 8131708403 , 2015
- STM32L152xx ARM Cortex M3 Microcontroller Reference Manual 5/97
- ARM Company Ltd. "ARM Architecture Reference Manual- ARM DDI 0100E"

5IO5-12: Human-Computer Interaction

	Credit: 2	Max Marks: 100 (IA :20, ETE:80)		
	2L+ 0T+ 0P	End Term Exams: 2hr		
S.No.		Contents	Hours	
1	Introduction: Objective, scope and out	come of the course.	01	
2	Historical evolution of the field, Inte	ractive system design, Concept of usability -		
	definition and elaboration, HCI and solution	ftware Engineering, GUI design and Aesthetics,	02	
	Prototyping techniques.			
2	Model-based Design and evaluation	Basic idea, introduction to different types of	1	
	models, GOMS family of models (KI	LM and CMN- GOMS), Fitts' law and Hick-	04	
	Hyman's law, Model-based design case	studies.		
3	Guidelines in HCI: Schneiderman's eight, golden rules, Norman's seven principles,			
	Norman's model of interaction, Nielsen'	s ten heuristics with examples of its use Heuristic	05	
	evaluation, Contextual inquiry, Cognitiv	ve walkthrough.		
4	Empirical research methods in HG	CI: Introduction (motivation, issues, research		
	question formulation techniques), Ex	periment design, and data analysis (with an	06	
	explanation of one-way ANOVA).			
5	e	ical task analysis (HTA), Engineering task models		
		ction to formalism in dialog design, design using	07	
		and (classical) Petri Nets in dialog design.		
6	•	vance of CA in IS design Model Human Processor	05	
	(MHP), OOP- Introduction OOM- Obje	ect-Oriented Modeling of User Interface Design.		
		Total	30	

Suggested Books

• Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, —Human-Computer Interaction, 3rd Edition, Pearson Education, 2004Brian Fling, —Mobile Design and Development, First Edition, O'Reilly Media Inc., 2009)

• Bill Scott and Theresa Neil, —Designing Web Interfaces, First Edition, O'Reilly, 2009. (

5IO5-13: Information Security System

	Credit: 2	Max Marks: 100 (IA :20, ETE:80))
	2L+ 0T+ 0P	End Term Exams: 2hr	
S.No.	Con	tents	Hours
1	Introduction: Objective, scope, and outcome of the course.		01
2	•	ces and mechanism, classical encryption position ciphers, cryptanalysis, stream and	05
3	Modern block ciphers : Block Cipher structure, Data Encryption Standard (DES) with an example, the strength of DES, Design principles of block cipher, AES with structure, its transformation functions, key expansion, example, and implementation. Multiple encryption and triple DES, Electronic Code Book, Cipher Block Chaining Mode, Cipher Feedback mode, Output Feedback mode, Counter mode.		06
4.	Public Key Cryptosystems with Applications: Requirements and Cryptanalysis, RSAcryptosystem, Rabin cryptosystem, Elgamal cryptosystem, Elliptic curve cryptosystem.		
5	Cryptographic Hash Functions, their applications: Simple hash functions, its requirements and security, Hash functions based on Cipher Block Chaining, Secure Hash Algorithm (SHA). Message Authentication Codes, its requirements and security, MACs based on Hash Functions, Macs based on Block Ciphers. Digital Signature, its properties, requirements and security, various digital signature schemes (Elgamal and Schnorr), NIST digital Signature algorithm.		
6	Key management and distribution: symplet asymmetric encryptions, distribution of prinfrastructure. Remote user authentication	metric key distribution using symmetric and public keys, X.509 certificates, public key with symmetric and asymmetric encryption, proaches, SSL architecture and protocol,	06
	То		30

Suggested Books

• Security in Computing, Fourth Edition, by Charles P. Pfleeger, Pearson Education

- Cryptography And Network Security Principles And Practice, Fourth or Fifth Edition, William Stallings, Pearson
- Modern Cryptography: Theory and Practice, by Wenbo Mao, Prentice Hall.
- Network Security Essentials: Applications and Standards, by William Stallings. Prentice Hall.

5IO5-14: Smart Systems

	Credit: 2	Max Marks: 100 (IA :20, ETE:80)			
	2L+ 0T+ 0P	End Term Exams: 2hr			
S. No.	C	Contents	Hours		
1	Introduction to Sensor Devices		06		
	Piezoresistive pressure sensor, Piezoresistive Accelerometer, Capacitive Sensing, Accelerometer				
	and Microphone, Resonant Sensor and Vibrat	tory Gyroscope, Low-Power, Low Voltage Sensors-			
	Micro Electro Mechanical Systems Analysis	cal Systems Analysis and Design of MEMS Devices- Nano Sensors.			
2 Interfacing Sensor Information and MCU		J	06		
	Amplification and Signal Conditioning, Integrated Signal Conditioning, Digital conversion, MCU Control MCUs for Sensor Interface, Techniques and System Consideration, Sensor				
	Integration.				
3	Control Techniques and Standards		06		
	Control of Sensors using - State Machines,	Fuzzy Logic, Neural Networks, Adaptive Control.			
	Control Application using - CISC, RISC, DS	P Control and IEEE 1451 Standards.			
4	Communication For Smart Sensors		06		
	Wireless Data Communications- RF Sensi	ing, Telemetry, Automotive Protocols, Industrial			
	Networks Home Automation, MCU Protocol	S.			
	Packaging, Testing and Reliability Implica	tions of Smart Sensors	06		
5	Semiconductor Packaging- Hybrid Packagin	ng- Packaging for Monolithic Sensors- Reliability			
	Implications Testing Smart Sensors- HVAC	Sensor Chip			
		Total	30		

- Artificial Intelligence by Elaine Rich, Kevin Knight and Shivashankar B Nair, Tata McGraw Hill.
- Introduction to Artificial Intelligence and Expert Systems by Dan W. Patterson, Pearson Education.
- Artificial Intelligence: A Modern Approach by S. Russell and P. Norvig, Prentice Hall.

5IO3-21: Arduino Lab

	Credit: 1	Max Marks: 50 (IA :30, ETE:20)		
	0L+ 0T+ 2P	End Term Exams: 2hr		
S. No.	. Content			
1	Understanding Arduino UNO Board and Components			
2	Installing and work with Arduino IDE			
3	Blinking LED sketch with Arduino			
4	Simulation of 4-Way Traffic Light with Ardu	ino		
5	Using Pulse Width Modulation			
6	LED Fade Sketch and Button Sketch			
7	Using a Potentiometer to Change the Resistan	ce Values of an LED		
8	Digital Read Serial Sketch (Working with DH	IT/IR/Gas or Any other Sensor)		
9	Working with Adafruit Libraries in Arduino			
10	Spinning a DC Motor and Motor Speed Contr	ol Sketch		
11	Working with Shields			
12	Interfacing Arduino with Cloud (Thingspeak	API)		

- Simon Monk "Programming Arduino: Getting Started with Sketches" 2nd Edition, Kindle Edition, McGraw Hill; 2nd edition
- John Boxall " Arduino Workshop: A Hands-On Introduction with 65 Projects", No Starch Press
- Michael Margolis "Arduino Cookbook, 2e", O'Reilly; 2nd edition
- Blum Richard "Arduino Programming in 24 Hours, Sams Teach Yourself", Sams Publishing; 1st edition

5IO4-22: Network Simulator Lab-3

	Credit: 1	Max Marks: 50 (IA :30, ETE:20)
	0L+ 0T+ 2P	End Term Exams: 2hr
S.No.	List	t of Experiments
1	Introduction to network simulators use	ed for wireless Ad Hoc and Sensor Networks.
2	Introduction to TCL scripting: demons	tration of one small network simulation script.
3	To study various trace file formats of r	network simulators.
4	To implement and compare various M	AC layer protocols.
5	To implement and compare AODV an	d DSR routing algorithms in MANET
6	To implement DSDV routing algorithm	ns in MANET
7	To implement signal strength based lir	k management routing protocols.
8	To calculate and compare average thro	bughput for various TCP variant
9	To implement and compare various ro	uting protocols for wireless sensor networks

- ns-3-manual, https://www.nsnam.org/docs/ns-3-manual.pdf
- Documentation NS-3, https://www.nsnam.org/documentation/

Credit: 1 Max Marks: 50 (IA :30, ETE:20) 0L+ 0T+ 2P End Term Exams: 2hr S.No I 1 Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. 2 Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. 3 a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using V=shall's algorithm. 4 Implement 0/1 Knapsack problem using V=shall's algorithm. 6 From a given vertex in a weighted con=ter graph, find shortest paths to other vertices using Dijkstra's algorithm. 6 Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. 7 A. Print all the nodes reachable from a given undirected graph using the BFS method. 7 Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 8 Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.		5104-25. Analysis of Algorithms Lab		
 S. No. List of Experiments Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		Credit: 1	Max Marks: 50 (IA :30, ETE:20)	
 Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		0L+ 0T+ 2P	End Term Exams: 2hr	
 the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 	S. No.	List	of Experiments	
 the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 				
be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.2Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.3a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm.4Implement 0/1 Knapsack problem using Dynamic Programming.5From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.6Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.7b. Check whether a given graph is connected or not using the DFS method.7Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.	1	Sort a given set of elements using the Qui	cksort method and determine the time required to sort	
 be generated using the random number generator. Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		the elements. Repeat the experiment for	different values of n, the number of elements in the list to	
 Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Find Minimum Cost Spanning Tree of a given starting node in a digraph using the BFS method. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		be sorted and plot a graph of the time t	aken versus n. The elements can be read from a file or can	
 time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Find Minimum Cost Spanning Tree of a given undirected graph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		be generated using the random number ge	nerator.	
 elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 	2	Implement a parallelized Merge Sort algo	orithm to sort a given set of elements and determine the	
read from a file or can be generated using the random number generator.3a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm.4Implement 0/1 Knapsack problem using Dynamic Programming.5From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.6Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.7b. Check whether a given graph is connected or not using the DFS method.8.Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.		time required to sort the elements. Repea	at the experiment for different values of n, the number of	
 a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		elements in the list to be sorted and plo	ot a graph of the time taken versus n. The elements can be	
 closure of a given directed graph using Warshall's algorithm. Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		read from a file or can be generated using	the random number generator.	
 Implement 0/1 Knapsack problem using Dynamic Programming. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 	3	a. Obtain the Topological ordering of ve	rtices in a given digraph. b. Compute the transitive	
 From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		closure of a given directed graph using W	arshall's algorithm.	
Dijkstra's algorithm. 6 Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm. 7 a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. 7 b. Check whether a given graph is connected or not using the DFS method. 8. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.	4	Implement 0/1 Knapsack problem using I	Dynamic Programming.	
6Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.a. Print all the nodes reachable from a given starting node in a digraph using the BFS method.7b. Check whether a given graph is connected or not using the DFS method.8.Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.	5	From a given vertex in a weighted connect	cted graph, find shortest paths to other vertices using	
 a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		Dijkstra's algorithm.		
 a. Print all the nodes reachable from a given starting node in a digraph using the BFS method. b. Check whether a given graph is connected or not using the DFS method. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 	6	Find Minimum Cost Spanning Tree of a g	iven undirected graph using Kruskal's algorithm.	
 7 b. Check whether a given graph is connected or not using the DFS method. 8. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm. 		a. Print all the nodes reachable from a giv	en starting node in a digraph using the BFS method.	
8.	7	b. Check whether a given graph is connec	ted or not using the DFS method.	
9. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.	8.	Find Minimum Cost Spanning Tree of a g	iven undirected graph using Prim's algorithm.	
	9.	Implement All-Pairs Shortest Paths Proble	em using Floyd's algorithm.	
10 Implement N Queen's problem using Backtracking.	10	Implement N Queen's problem using Back	ktracking.	

5IO4-23: Analysis of Algorithms Lab

- T.H. Cormen, C.E. Leiserson, R.L. Rivest "Introduction to Algorithms", PHI.
- Sedgewich, Algorithms in C, Galgotia
- Berman. Paul, "Algorithms, Cengage Learning".
- Richard Neopolitan, Kumar SS Naimipour, "Foundations of Algorithms"
- Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, Reprint 2006
- E. Horowitz, S. Sahni, and S. Rajsekaran, "Fundamentals of Computer Algorithms," Galotia Publication

	5IO4-24: Em	bedded Systems Lab
	Credit: 1	Max Marks: 50 (IA :30, ETE:20)
	0L+ 0T+ 2P	End Term Exams: 2hr
S. No.	List	of Experiments
1	Programming practice on assembler and si	mulator tools.
2	Basic experiments with Atmega: - Blink, I	Digital Read Serial, Fade, and Read Analog Voltage.
3	Experiments with Atmega -Digital: - Butto	on, Digital Input Pullup, Blink Without Delay.
4	Experiments with Atmega -Analog: - Anal and Communication:-Bluetooth, Zigbee an	og In Out Serial, Sensors: - LM35, Display: - LCD, LED ad Wi Fi.
5	Intel Atom Processor:- Linux Shell comma	ands
6	Experiments with Intel Atom Processor:- to Accelerometer using analog boar	emperature sensor Interface, Capacitive touch pad and
7.	Experiments with Intel Atom Processor:- E	Blinking LED and Controlling the motor using GPIO board
8.	Introduction to ARM7- Cortex processor I	nstruction set.
9.	Programming in Integrated Development H	Environment
10.	Experiments with ARM7- Cortex (STM 32 Sensor and Accelerometer.	2F4 Discovery):-Interfacing with Audio card, MEMS
11.	Experiments with ARM7- Cortex (ST N Working with SPI and I2C sensors including	Jucleo-F401RE):- Interfacing with MEMS and Bluetooth, ng accelerometers

- Vijay Madisetti, Arshdeep Bahga, —Internet of Things (A Hands-on Approach), Universities Press, 2015
- Mandler, B., Barja, J., MitreCampista, M.E., Cagáová, D., Chaouchi, H., Zeadally, S., Badra, M., Giordano, S., Fazio, M., Somov, A., Vieriu, R.-L., Internet of Things. IoT Infrastructures, Springer International Publication
- Hanes David, Salgueiro Gonzalo, Grossetete Patrick), Barton Rob "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for the Internet of Things", Pearson publication

6IO3-01: Digital Image Processing

	Credit: 2	Max Marks: 100 (IA :20, ETE:8	0)
	2L+ 0T+ 0P	End Term Exams: 2hr	
S. No.	Con	tents	Hours
1	Introduction: Objective, scope, and outcome	of the course.	01
2	Introduction to Image Processing: Digital In Steps in image Processing, Image acquisition,	nage representation, Sampling & Quantization, color image representation.	04
3	0	ty transform functions, histogram processing, properties, frequency domain filters, color sics of Wavelet Transforms.	06
4	Image Restoration: Image degradation and re degradation function, Inverse Filtering, Homo	storation process, Noise Models, Noise Filters, morphism Filtering.	07
5	Image Compression: Coding redundancy, Int Huffman Coding, Arithmetic coding, Lossy co	erpixel redundancy, Psychovisual redundancy, ompression techniques, JPEG Compression.	05
6		oint, Line, and Edge Detection, Thresholding, rms, Region-Based Segmentation, Boundary	05
	Total		28

- Rafael C Gonzalez, Richard E Woods, "Digital Image Processing," 4th Edition, Pearson, 2018.
- Kenneth R. Castleman, Digital Image Processing Pearson, 2006.
- Anil K.Jain, "Fundamentals of Digital Image Processing," Person Education, 2003.

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P	End Term Exams: 3hr	
S. No.		ontents	Hours
1		cteristics, Environmental Parameters (EP), ity and Linearity of the Sensor Types Capacitive ss Sensors Using Quartz Resonators, Ultrasonic	08
2	Thermal and Magnetic Sensors Introduction, Gas thermometric Sensors, Ther Acoustic Temperature Sensor, Dielectric Com Low Temperature Thermometer, Nuclear The Change Sensors and the Principles Behind - M resistive Sensing, Semiconductor Magnetores	Astant and Refractive Index thermosensors, Helium ermometer, Magnetic Thermometer, Resistance Magneto, resistive Sensors, Anisotropic Magneto Sistors, Hall Effect and Sensors, Inductance and ment Transducers, Synchros, Synchroresolvers,	08
3	Standard Hydrogen Electrode (SHE), Liquid	ors, the Electrochemical Cell, The Cell Potential,	08
4	Smart Sensors Introduction, Primary Sensors, Excitation, A	Amplification, Filters, Converters, Compensation nunication, Standards for Smart Sensor Interface,	08
5	Actuators Pneumatic and Hydraulic Actuation Systems, systems Directional Control valves, Presure c control valves Process control valves, Rotary	ontrol valves, Cylinders, Servo and proportional	08
		Total	40

- D. Patranabis "Sensors and Transducers" –PHI Learning Private Limited.
- W. Bolton "Mechatronics" –Pearson Education Limited.
- Sensors and Actuators D. Patranabis 2nd Ed., PHI, 2013.

6104-03. Sensor Networks & IoT

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P	End Term Exams: 3hr	
S. No.	Co	ntents	Hours
1	Introduction Introduction to Sensor networks in smart trans	sportation smart cities smart living smart	08
	energy, smart health, and smart learning.	sportation, smart entes, smart nying, smart	
2	Sensor Network Systems		08
	Cyber Physical Systems, Systems of Systems,	Software Architectures and Connectors,	
		ata Mining, Privacy and Security IoT Reference	
	Architecture Introduction, Functional View, In	formation View, Deployment and Operational	
	View, Other Relevant architectural views. Rea	1-World Design Constraints- Introduction,	
	Technical Design constraints, hardware, Data	representation and visualization, Interaction and	
	remote control.		
3	IoT Physical Devices and Endpoints		08
	Exemplary Device Board, Linux on Raspberry		
	Hardware Platforms and Energy Consumption		
	Positioning and Localization, Medium Access	1 00	
4	Routing: Transport Protocols, Network Securit	ty, Middleware, Databases	0.0
4	Industrial Automation and IoT		08
		tecture-based device integration, SOCRADES:	
		ngs, IMC-AESOP: from the Web of Things to the	
5	Cloud of Things, Commercial Building Autom IoT Implementations Case Study	ומנוסח	08
3	Case study: Smart Grid &IoT, Commercial bu	ilding outomotion using IoT Bosont trands in	Vð
	sensor network and IOT architecture, Automat	e	
	77	otal	40

- Vijay Madisetti, Arshdeep Bahga, —Internet of Things (A Hands-on Approach), Universities Press, 2015
- Mandler, B., Barja, J., MitreCampista, M.E., Cagáová, D., Chaouchi, H., Zeadally, S., Badra, M., Giordano, S., Fazio, M., Somov, A., Vieriu, R.-L., Internet of Things. IoT Infrastructures, Springer International Publication
- Hanes David, Salgueiro Gonzalo, Grossetete Patrick), Barton Rob "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for the Internet of Things", Pearson publication

6IO4-04: Cloud Computing

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)		
	3L+ 0T+ 0P	End Term Exams: 3hr		
S.No.		Contents	Hours	
1	Introduction: Objective, scope and outcome	e of the course.	01	
2	Introduction: Objective, scope and outcome of the course. Introduction Cloud Computing: Nutshell			
	of cloud computing, Enabling Technology, H	listorical development, Vision, feature Characteristics and	06	
	components of Cloud Computing. Challenge	es, Risks and Approaches of Migration into Cloud. Ethical	00	
	Issue in Cloud Computing, Evaluating the Clo	oud's Business Impact and economics, Future of the cloud.		
	Networking Support for Cloud Computing.	Ubiquitous Cloud and the Internet of Things		
3	Cloud Computing Architecture: Cloud R	Reference Model, Layer and Types of Clouds, Services		
	models, Data centre Design and interconn	ection Network, Architectural design of Compute and	10	
	Storage Clouds. Cloud Programming and S	Software: Fractures of cloud programming, Parallel and		
	distributed programming paradigms-Map	Reduce, Hadoop, High-level Language for Cloud.		
	Programming of Google App Engine.			
4	Virtualization Technology: Definition,	, Understanding and Benefits of Virtualization.		
	Implementation Level of Virtualization, Vir	tualization Structure/Tools and Mechanisms, Hypervisor	09	
	VMware, KVM, Xen. Virtualization: of CP	U, Memory, I/O Devices, Virtual Cluster and Resources	07	
	Management, Virtualization of Server, Desk	top, Network, and Virtualization of data-Centre.		
5	Securing the Cloud: Cloud Information s	security fundamentals, Cloud security services, Design		
	principles, Policy Implementation, Cloud Co	omputing Security Challenges, Cloud Computing Security		
	Architecture. Legal issues in Cloud Compu	uting. Data Security in Cloud: Business Continuity and	07	
	Disaster Recovery, Risk Mitigation, Unders	standing and Identification of Threats in Cloud, SLA-	07	
	Service Level Agreements, Trust Manageme	ent		
6	Cloud Platforms in Industry: Amazon we	b services, Google AppEngine, Microsoft Azure Design,		
	Aneka: Cloud Application Platform -Integr	ration of Private and Public Clouds Cloud applications:	~-	
	Protein structure prediction, Data Analysis, S	Satellite Image Processing, CRM	07	
		Total	40	

- Dan C Marinescu, Cloud Computing, Theory and Practice, MK Elsevier
- Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms, Wiley
- Barrie Sosinsky, Cloud Computing Bible, Wiley
- Jim Smith, Ravi Nair, Virtual Machines: Versatile Platforms for Systems and Processes, MK Elsevier

6IO4-05: Introduction to Machine Learning

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P	End Term Exams: 3hr	
S. No.	Co	ntents	Hours
1	Introduction to Machine Learning		
	What is machine learning – Types of Machine	e learning Techniques-security with deep	
	learningReinforcement learning- Logistic F	Regression-hypothesis- Logistic regression	
	models- Decision boundary- Cost function-	Dimensionality Reduction- Principal Component	08
2	Predictive Analytics		
	Linear regression-with one variable-with multi		
	linear regression-Regression analysis- Predicti	ve models - prediction using logistics	
	regression.		08
3	Classification and Clustering Techniques		
	Support vector Machine- Decision Tree-Nai		
		ering methods-Partitioning methods- Grid based	
	methods-K means clustering - pattern based w	ith deep learning.	08
4	Ensembling Models		
		nbling - Types of Ensembling- Techniques of	
	Ensembling- Bagging-Boosting – Stacking-Blo	ending-AdaBoost -informatics with deep learning	08
5	Model Evaluation, Model Selection, And Alg	gorithm Selection	
	Statistical tests - validation Techniques-Cross	validation -Nested Cross validation- Essential	
	Model Evaluation Terms and Techniques - Bo	otstrapping and Uncertainties -Cross-validation	08
	and Hyperparameter Optimization - Algorithm	Comparison - Testing the Difference of	00
	Proportions - Comparing Two Models with the	e McNemar Test - The F-test for Comparing	
	Multiple Classifiers - Comparing Algorithms -	optimizing deep learning hyper parameters by	
	evolutionary algorithm.		
	Т	otal	40

- Introduction to Machine Learning with Python: A Guide for Data Scientists by Andreas C. Müller, Sarah Guido, Publisher(s): O'Reilly Media, Inc., ISBN: 9781449369415
- Ensemble Methods: Foundations and Algorithms by Zhi-Hua Zhou , CRC Press, 2012
- https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python

6IO5-11: Embedded IoT

	Credit: 3	Max Marks: 150 (IA :30, ETE:120))
	3L+ 0T+ 0P	End Term Exams: 3hr	
S. No.	Con	tents	Hours
1		actional Characteristics, Recent Trends in the alth Care, Machine to Machine (M2M), Smart nart Grid	08
2	IoT ARCHITECTURE	T: Sensors, Actuators, Embedded Computation	08
3	Communication Principles RFID, ZigBEE, Bluetooth, Internet Commun and UDP, IEEE 802 Family of Protocols, Cel	ication, IP Addresses, MAC Addresses, TCP lular, Introduction to EtherCAT.	08
4	Keystream Recovery Attacks against WEP -	Basic Types, WEP Key Recovery Attacks, - RFID Security, Security Issues in ZigBEE: - Bluetooth Security: Threats to Bluetooth	08
5	Cloud Security Concepts Confidentiality, privacy, integrity, authentic control, defence in depth, least privilege, how concepts mean and their importance in PAAS the cloud; Cryptographic Systems Symmetric	cation, non-repudiation, availability, access these concepts apply in the cloud, what these , IAAS and SAAS. e.g. User authentication in cryptography, stream ciphers, block ciphers, ohy, hashing, digital signatures, public-key icates, OpenSSL.	08
	То	tal	40

Suggested Books

- P Adrian McEwen and Hakim Cassimally, —Designing the Internet of Things^{II}, John Wiley and Sons Ltd, UK, 2014.
- Olivier Hersent, David Boswarthick and Omar Elloumi, —The Internet of Things: Key Applications and Protocols, John Wiley and Sons Ltd., UK 2012.
- Dieter Uckelmann, Mark Harrison, Florian Michahelles, —Architecting the Internet of Things, Springer, New York, 2011.
- Johnny Cache, Joshua Wright and Vincent Liu, —Hacking Exposed Wireless: Wireless Security Secrets and Solutions, Tata McGraw Hill, New Delhi, 2010
- Himanshu Dwivedi, Chris Clark and David Thiel, —Mobile Application Securityl, Tata McGraw Hill, New Delhi, 2010.
- Tim Mather, Subra Kumaraswamy, ShahedLatif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance" O'Reilly Media; 1 edition [ISBN: 0596802765], 2009.

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर

OFFICE OF THE DEAN ACADEMICS

6IO5-12: Distributed System mlrg. 150 (IA .20 ETE.120)

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.		Contents	Hours
1	Introduction: Objective, scope and outcor	ne of the course.	01
2	computation paradigms, Model of distribut Operating System, Network Operating Sy Autonomous Systems, design issues in of Architectures: Goals, Transparency, Ser Environment (DCE). Theoretical issues in	ted systems, nodes of a distributed system, Distributed ted systems, Types of Operating systems: Centralized ystems, Distributed Operating Systems & Cooperative distributed operating systems. Systems Concepts and vices, Architecture Models, Distributed Computing distributed systems: Notions of time and state, states & s & event precedence, recording the state of distributed	08
3	Representation, Client/Server Model, Time Object Model Resource Servers, Cha (Language not included).Inter-process C	ng: Processes and Threads, Graph Models for Process e Services, Language Mechanisms for Synchronization, aracteristics of Concurrent Programming Languages Communication and Coordination: Message Passing, ation, Name and Directory services, RPC, and RMI case	08
4	Distributed Process Scheduling: A Syste Communication, Dynamic Load Sharing Distributed File Systems: Transparence implementation, Transaction Service and	em Performance Model, Static Process Scheduling with g and Balancing, Distributed Process Implementation. ies and Characteristics of DFS, DFS Design and Concurrency Control, Data and File Replication. Case eral Parallel file System and Window's file systems.	08
5	Distributed Shared Memory: Non- Consistency Models, Multiprocessor Implementation of DSM systems. Models Distributed Snapshots, modelling a Distr	Uniform Memory Access Architectures, Memory Cache Systems, Distributed Shared Memory, s of Distributed Computation: Preliminaries, Causality, ibuted Computation, Failures in a Distributed System, Distributed Deadlock handling, Distributed termination	08
6	Distributed Agreement : Concept of Faul Byzantine Agreement, Impossibility of Replicated Data Management: concepts as	Its, failure and recovery, Byzantine Faults, Adversaries, Consensus and Randomized Distributed Agreement. nd issues, Database Techniques, Atomic Multicast, and y: Introduction, Architecture, CORBA RMI, CORBA	08
		Total	41

- Andrew S. Tannenbaum & Maarten Van Steen, Distributed Systems: Principles and Paradigms, Pearson
- George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair, Distributed Systems: Concepts and Design, Addison Wesley
- P. K. Sinha, Distributed Operating Systems: Concepts and Design, IEEE press
- M. Singhal and N. G. Shivaratri, Advanced Concepts in Operating Systems,, McGraw-Hill

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: https://btu.ac.in

6IO5-13: Data Mining & Predicting Modeling

	Credit: 3	Max Marks: 150 (IA :30, ETE:120)	
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.		Contents	Hours
2	Implementation - Data Generalization by Data Cube Computation Methods - Pro Technology - Multidimensional Data Ana Introduction, Data Preprocessing An Introduction to data mining – kinds of – applications – issues in mining – Data – data visualization – Measuring Data Data cleaning – Data Integration – Data	cal Processing ouse Modeling: Data Cube and OLAP - Data Warehouse Attribute-Oriented Induction - Data Cube Computation - cessing Advanced Kinds of Queries by Exploring Cube	09
3	Classification Basics – Decision tree Induction – Ba Evaluation and Selection - Techniques Networks - Classification by Backpropa	ye's Classification - Rule-Based Classification - Model to Improve Classification Accuracy - Bayesian Belief agation - Support Vector Machines - Classification Using ning from Your Neighbors) - Other Classification Methods.	08
4	Clustering Basics - Partitioning Methods - Hierar Methods- Evaluation of Clustering - Ch - Outlier Detection Methods - Statistical Based Approaches.	chical Method - Density-Based Methods - Grid-Based astering with Constraints - Outliers and Outlier Analysis Approaches - Proximity-Based Approaches - Clustering-	09
5		ntiers ethodologies - Data Mining Applications - Data Mining world applications – Data Mining Tool study.	08
	Suggested Deeler	Total	42

Suggested Books

• Han, M.Kamber, "Data Mining: Concept and Techniques", Academic Press, Morgan Kaufmann.

• Alex Berson and Stephen J. Smith. "Data Warehousing, Data Mining & OLAP", Tata McGraw Hill, 2016.

• Pieter Adrians, Dolf Zantinge. "Data Mining", Addison Wesley, 2000.

6IO5-14: Artificial Intelligence and Expert Systems

	Credit: 3	Max Marks: 150 (IA :30, ETE:12	20)
	3L+ 0T+ 0P	End Term Exams: 3hr	
S.No.	Con	tents	Hours
1	Introduction Overview of Artificial Intelligence, History, space representations Depth-first, breadth-f game playing, Genetic algorithms.		08
2	Knowledge Representation and Issues Notational systems, Trees, graphs, hierard frames, semantic networks, constraints, con discovery in databases (KDD).		08
3	Logical Reasoning and Probabilistic Reas Predicate Calculus resolution, complete	ness, and strategies Unification, Prolog, g, Probabilistic inference networks Fuzzy	08
4	Learning Knowledge acquisition, classification rules, Neural Networks Principles, biological analogies Training (ter	self-directed systems.	08
5	Expert Systems Definition – Features of an expert system – 0 – Knowledge Representation in expert sys EMYCIN	Organization – Characteristics – Prospector	08
	То	4-1	40

- Stuart Russel and Peter Norvig, 'Artificial Intelligence A Modern Approach', Second Edition, Pearson Education, 2003 / PHI.
- Bratko, I., Prolog, 2nd Ed., Addison-Wesley, 1990.
- George F.Luger, 'Artificial Intelligence Structures and Strategies for Complex Problem Solving', Fourth Edition, Pearson Education, 2002.
- Giarratano, J., and Riley G., Expert Systems Principles and Programming, PWS-KENT, 1989.

6IO4-21: Machine Learning Lab

Credit: 1.5		Max Marks: 75 (IA :45, ETE:30)	
0L+ 0T+ 3P		End Term Exams: 2hr	
S.No.	List of Experiments		
	Analysis and implementation using Python /Jupiter Notebook		
1	i. Compute the distance travelled by the robot from current position after a sequence of		
1	movement and original point.		
	ii. Creation of scatter plot using sepal length and petal width to separate the Species classes		
2	Computation of Statistical details and Comp		
_		artiles, IQR) for the attribute(age) of each employee	
	a Tea Factory.		
2	ii. Analyze the complexity of Heap sort, applied over different sized random lists.		
3	Preprocessing and construction of a quality dataset (80%) and test sets (20%) by removing		
	i. Preprocess the given data to build good training sets (80%) and test sets (20%) by removing the missing values and imputing them with the mean value		
	the missing values and imputing them with the mean value. ii. Examine the interrelations among the set of variables using Principal Component Analysis,		
	display the PCA Components and generat	- · · ·	
Analysis and Interpretation of data			
4	•	ring the Punctuation, Numbers, Special Characters	
and word length<=3. Tokenize the Words and Stem.			
	ii. Generate a word cloud for the Twitter data	aset and retrieve the top 15 positive and negative	
	tags.		
	Build new models (Classification and Cluster		
	i. Find core samples of high density and exp	and clusters from them using DBSCAN Clustering.	
5		a(80%-20%) and train or fit the data into the model	
5	using K Nearest Neighbor Algorithm.		
6	Evaluate the Performance of Machine Learn		
		rning algorithms using Confusion Matrix, Accuracy,	
	Sensitivity, Specificity, Precision and Rec		
		nearity between the a) stock price and interest rate,	
	b)stock price and unemployment rate.		

- Introduction to Machine Learning with Python: A Guide for Data Scientists by Andreas C. Müller, Sarah Guido, Publisher(s): O'Reilly Media, Inc., ISBN: 9781449369415
- Ensemble Methods: Foundations and Algorithms by Zhi-Hua Zhou , CRC Press, 2012
- https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python

6IO4-22: Raspberry Pi Lab

Credit: 1.5 Max Marks: 75 (IA :45, ETE:30)				
0L+ 0T+ 3P End Term Exams: 2hr				
S.No.	List of Experiments			
1	Getting started with Raspberry Pi, Install Raspian on your SD card			
2	Linux basic commands.			
3	Coding simple programs in Python.			
4	How to use Python-based IDE (integrated development environments) for the Raspberry Pi and how to trace and debug Python code on the device			
5	How to have your Raspberry Pi interact with online services through the use of public APIs and SDKs			
6	Understanding the connectivity of Raspberry-Pi with IR sensor. Write an application to detect obstacle and notify user using LEDs.			
7	Design APP Using MIT App Inventor and Connect to Temperature Sensor			

Suggested Books

• Ian H. Witten & Eibe Frank, "Data Mining: Practical Machine Learning Tools and Techniques", 2005 Elsevier Inc.

6IO4-23: IoT Enabled Embedded Devices Lab

Credit: 1.5		Max Marks: 75 (IA :45, ETE:30)				
0L+ 0T+ 3P		End Term Exams: 2hr				
S.No.	List of Experiments					
1	Deploy using Node MCU/ESP 32 - Temperature Sensor Interfacing (LM35)					
2	Deploy using Node MCU/ESP 32 - Bluetooth Interfacing (HC05)					
3	Deploy using Node MCU/ESP 32 - Motor driver Interfacing (L298)					
5	Deploy using Node MCO/ESF 52 - Motor driver interfacing (E298)					
4	Deploy using Node MCU/ESP 32 - LCD Interfacing (HD44780					
5	IMPLEMENTATION OF IoT using Google Assistant – Arest server - Creating own server – Project					
6	IMPLEMENTATION OF IoT using Raspberry Pi & Python Programming: - LCD Interfacing (HD44780					
7	IMPLEMENTATION OF IoT using Raspberry Pi & Python Programming: - Motor driver Interfacing					
	(L298)					
8	IMPLEMENTATION OF IoT using Raspberry Pi & Python Programming: - Camera interface					
9	IMPLEMENTATION OF IoT using BLYNK/CAYENNE Installation and Activation - Blinking an LED					
	-Reading Analog Voltage - LCD Interfacing (HD44780)					
10	IoT mini Project – Create a scenario and provide end to end solution as mini project.					
	U U					

- Vijay Madisetti, Arshdeep Bahga, —Internet of Things (A Hands-on Approach), Universities Press, 2015
- Mandler, B., Barja, J., MitreCampista, M.E., Cagáová, D., Chaouchi, H., Zeadally, S., Badra, M., Giordano, S., Fazio, M., Somov, A., Vieriu, R.-L., Internet of Things. IoT Infrastructures, Springer International Publication
- Hanes David, Salgueiro Gonzalo, Grossetete Patrick), Barton Rob "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for the Internet of Things", Pearson publication

6IO4-24: Mobile Application Development Lab

Credit: 1.5 Max Marks: 75 (IA :45, ETE:30)			
0L+ 0T+ 3P		End Term Exams: 2hr	
S.No.	List of Experiments		
1	To study Android Studio and android studio installation. Create "Hello World" application.		
2	To understand Activity, Intent, Create sample application with login module. (Check username and password).		
3	Design simple GUI application with activity and intents e.g. calculator.		
4	Develop an application that makes use of RSS Feed.		
5	Write an application that draws basic graphical primitives on the screen		
6	Create an android app for database creation using SQLite Database.		
7	Develop a native application that uses GPS location information		
8	Implement an application that writes data to the SD card.		
9	Design a gaming application		
10	Create an application to handle images and videos according to size.		